Analysis of the (s, S) policy for perishables with a random shelf life

A continuous review perishable inventory system operating under the (s,S) policy is considered. Assuming a random shelf life with a general distribution, renewal arrivals and a negligible replenishment lead time, exact expressions for the expected cost rate function for unit and batch demands are derived. For unit demands, it is shown that the average cost rate function is quasi-convex in (s,S). Numerical findings indicate that the loss incurred by ignoring the randomness of the shelf life can be drastic. It is observed that the shape of the shelf life distribution has a significant impact on the costs and a precise estimation of shelf life distribution may result in substantial savings. Based on the presented analytical results, a new heuristic for positive lead times is proposed. Extensive numerical studies show that the proposed heuristic performs better than an existing one suggested for fixed shelf lives in most of the cases studied.

[1]  S. Kalpakam,et al.  Continuous review (s, S) inventory system with random lifetimes and positive leadtimes , 1994, Oper. Res. Lett..

[2]  Eylem Tekin,et al.  Age-based vs. stock level control policies for a perishable inventory system , 2001, Eur. J. Oper. Res..

[3]  Howard J. Weiss,et al.  Optimal Ordering Policies for Continuous Review Perishable Inventory Models , 1980, Oper. Res..

[4]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[5]  S. K. Goyal,et al.  Recent trends in modeling of deteriorating inventory , 2001, Eur. J. Oper. Res..

[6]  David Perry,et al.  AN (S - 1, S) Inventory System with Fixed Shelf Life and Constant Lead Times , 1998, Oper. Res..

[7]  Liming Liu,et al.  (s, S) continuous review models for inventory with random lifetimes , 1990 .

[8]  Ü. Gürler,et al.  A note on "Continuous review perishable inventory systems: models and heuristics" , 2003 .

[9]  Huan Neng Chiu,et al.  An approximation to the continuous review inventory model with perishable items and lead times , 1995 .

[10]  S. Kalpakam,et al.  A continuous review perishable inventory model , 1988 .

[11]  Fred Raafat,et al.  Survey of Literature on Continuously Deteriorating Inventory Models , 1991 .

[12]  S. Kalpakam,et al.  A perishable inventory system with modified (S-1, S) policy and arbitrary processing times , 2001, Comput. Oper. Res..

[13]  Liming Liu,et al.  (s, S) Continuous Review Models for Products with Fixed Lifetimes , 1999, Oper. Res..

[14]  Morris A. Cohen Analysis of Single Critical Number Ordering Policies for Perishable Inventories , 1976, Oper. Res..

[15]  S. Kalpakam,et al.  A lost sales (S - 1,S) perishable inventory system with renewal demand , 1996 .

[16]  Steven Nahmias,et al.  S-1, S Policies for Perishable Inventory , 1985 .

[17]  Steven Nahmias,et al.  Optimal ordering policies for a product that perishes in two periods subject to stochastic demand , 1973 .

[18]  A. Krishna Moorthy,et al.  On perishable inventory with Markov chain demand quantities , 1992 .

[19]  S. Nahmias Myopic Approximations for the Perishable Inventory Problem , 1976 .

[20]  van Zyl,et al.  Inventory control for perishable commodities , 1963 .

[21]  Liming Liu,et al.  An (s, S) model for inventory with exponential lifetimes and renewal demands , 1999 .

[22]  Steven Nahmias,et al.  Higher-Order Approximations for the Perishable-Inventory Problem , 1977, Oper. Res..

[23]  Sanjoy K. Baruah,et al.  The Multiprocessor Scheduling of Precedence-Constrained Task Systems in the Presence of Interprocessor Communication Delays , 1998, Oper. Res..

[24]  Steven Nahmias,et al.  Perishable Inventory Theory: A Review , 1982, Oper. Res..

[25]  Liming Liu,et al.  A discrete‐time model for perishable inventory systems , 1999, Ann. Oper. Res..

[26]  Steven Nahmias,et al.  Optimal Ordering Policies for Perishable Inventory - II , 1975, Oper. Res..

[27]  N. Ravichandran,et al.  Stochastic analysis of a continuous review perishable inventory system with positive lead time and Poisson demand , 1995 .

[28]  Brant E. Fries,et al.  Optimal Ordering Policy for a Perishable Commodity with Fixed Lifetime , 1975, Oper. Res..

[29]  S. Nahmias On Ordering Perishable Inventory when Both Demand and Lifetime are Random , 1977 .

[30]  Liming Liu,et al.  Continuous Review Perishable Inventory Systems: Models and Heuristics , 2001 .

[31]  Steven Nahmias,et al.  A Heuristic Lot Size Reorder Point Model for Decaying Inventories , 1979 .

[32]  Liming Liu,et al.  An (s, S) random lifetime inventory model with a positive lead time , 1999, Eur. J. Oper. Res..

[33]  M. Hertog,et al.  Postharvest softening of apple (Malus domestica) fruit: A review , 2002 .