Dynamic mutation in MAP-Elites for robotic repertoire generation

One of the core functions in most Evolutionary Algorithms is mutation. In complex search spaces, which are common in Evolutionary Robotics, mutation is often used both for optimizing existing solut...

[1]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[2]  M D Gregory,et al.  Fast Optimization of Electromagnetic Design Problems Using the Covariance Matrix Adaptation Evolutionary Strategy , 2011, IEEE Transactions on Antennas and Propagation.

[3]  Kyrre Glette,et al.  Multi-objective Analysis of MAP-Elites Performance , 2018, ArXiv.

[4]  Antoine Cully,et al.  Robots that can adapt like animals , 2014, Nature.

[5]  Jean-Baptiste Mouret,et al.  Illuminating search spaces by mapping elites , 2015, ArXiv.

[6]  Yoshua Bengio,et al.  Algorithms for Hyper-Parameter Optimization , 2011, NIPS.

[7]  Kyrre Glette,et al.  Multi-objective evolution of fast and stable gaits on a physical quadruped robotic platform , 2016, 2016 IEEE Symposium Series on Computational Intelligence (SSCI).

[8]  Yasuhiro Fukuoka,et al.  Adaptive Dynamic Walking of a Quadruped Robot on Irregular Terrain Based on Biological Concepts , 2003, Int. J. Robotics Res..

[9]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[10]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[11]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[12]  Yiannis Demiris,et al.  Quality and Diversity Optimization: A Unifying Modular Framework , 2017, IEEE Transactions on Evolutionary Computation.

[13]  Dario Floreano,et al.  Gaining Insight into Quality Diversity , 2016, GECCO.

[14]  Jean-Baptiste Mouret,et al.  Data-efficient exploration, optimization, and modeling of diverse designs through surrogate-assisted illumination , 2017, GECCO.

[15]  Antoine Cully,et al.  Behavioral repertoire learning in robotics , 2013, GECCO '13.

[16]  Kyrre Glette,et al.  Self-Modifying Morphology Experiments with DyRET: Dynamic Robot for Embodied Testing , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[17]  N. Cliff Dominance statistics: Ordinal analyses to answer ordinal questions. , 1993 .

[18]  Stéphane Doncieux,et al.  Sferesv2: Evolvin' in the multi-core world , 2010, IEEE Congress on Evolutionary Computation.

[19]  Kenneth O. Stanley,et al.  Exploiting Open-Endedness to Solve Problems Through the Search for Novelty , 2008, ALIFE.

[20]  Antoine Cully,et al.  Evolving a Behavioral Repertoire for a Walking Robot , 2013, Evolutionary Computation.

[21]  Jorge Gomes,et al.  Evolution of Repertoire-Based Control for Robots With Complex Locomotor Systems , 2018, IEEE Transactions on Evolutionary Computation.

[22]  Thomas Bäck,et al.  Contemporary Evolution Strategies , 2013, Natural Computing Series.

[23]  Kenneth O. Stanley,et al.  Quality Diversity: A New Frontier for Evolutionary Computation , 2016, Front. Robot. AI.

[24]  Kyrre Glette,et al.  Combining MAP-Elites and Incremental Evolution to Generate Gaits for a Mammalian Quadruped Robot , 2018, EvoApplications.