Automatic verification of concurrent stochastic systems

Automated verification techniques for stochastic games allow formal reasoning about systems that feature competitive or collaborative behaviour among rational agents in uncertain or probabilistic settings. Existing tools and techniques focus on turn-based games, where each state of the game is controlled by a single player, and on zero-sum properties, where two players or coalitions have directly opposing objectives. In this paper, we present automated verification techniques for concurrent stochastic games (CSGs), which provide a more natural model of concurrent decision making and interaction. We also consider (social welfare) Nash equilibria, to formally identify scenarios where two players or coalitions with distinct goals can collaborate to optimise their joint performance. We propose an extension of the temporal logic rPATL for specifying quantitative properties in this setting and present corresponding algorithms for verification and strategy synthesis for a variant of stopping games. For finite-horizon properties the computation is exact, while for infinite-horizon it is approximate using value iteration. For zero-sum properties it requires solving matrix games via linear programming, and for equilibria-based properties we find social welfare or social cost Nash equilibria of bimatrix games via the method of labelled polytopes through an SMT encoding. We implement this approach in PRISM-games, which required extending the tool’s modelling language for CSGs, and apply it to case studies from domains including robotics, computer security and computer networks, explicitly demonstrating the benefits of both CSGs and equilibria-based properties.

[1]  Krishnendu Chatterjee,et al.  Stochastic omega-regular games , 2007 .

[2]  Quanyan Zhu,et al.  A Stochastic Game Model for Jamming in Multi-Channel Cognitive Radio Systems , 2010, 2010 IEEE International Conference on Communications.

[3]  Tim Roughgarden,et al.  Algorithmic game theory , 2010, Commun. ACM.

[4]  D. Avis,et al.  Enumeration of Nash equilibria for two-player games , 2010 .

[5]  Gabriel Santos,et al.  PRISM-games 3.0: Stochastic Game Verification with Concurrency, Equilibria and Time , 2020, CAV.

[6]  Marta Z. Kwiatkowska,et al.  Strategic Analysis of Trust Models for User-Centric Networks , 2013, SR.

[7]  Yoav Shoham,et al.  Run the GAMUT: a comprehensive approach to evaluating game-theoretic algorithms , 2004, Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004..

[8]  Francisco C. Santos,et al.  Evolutionary dynamics of collective action , 2011, ECAL.

[9]  Andrew McLennan,et al.  Gambit: Software Tools for Game Theory , 2006 .

[10]  Dmitrii Lozovanu,et al.  Determining Nash Equilibria for Stochastic Positional Games with Discounted Payoffs , 2017, ADT.

[11]  Bruno Dutertre,et al.  Yices 2.2 , 2014, CAV.

[12]  Vincent Conitzer,et al.  Mixed-Integer Programming Methods for Finding Nash Equilibria , 2005, AAAI.

[13]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[14]  Michael Wooldridge,et al.  A Tool for the Automated Verification of Nash Equilibria in Concurrent Games , 2015, ICTAC.

[15]  Michael J. Todd,et al.  The many facets of linear programming , 2002, Math. Program..

[16]  Tim Roughgarden,et al.  Algorithmic Game Theory , 2007 .

[17]  Krishnendu Chatterjee,et al.  Gist: A Solver for Probabilistic Games , 2010, CAV.

[18]  Michael Wooldridge,et al.  Automated Temporal Equilibrium Analysis: Verification and Synthesis of Multi-Player Games , 2020, Artif. Intell..

[19]  Alessio Lomuscio,et al.  MCMAS-SLK: A Model Checker for the Verification of Strategy Logic Specifications , 2014, CAV.

[20]  J. Nash Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Rupak Majumdar,et al.  Quantitative solution of omega-regular games , 2004, J. Comput. Syst. Sci..

[22]  Thomas A. Henzinger,et al.  Alternating-time temporal logic , 2002, JACM.

[23]  Taolue Chen,et al.  Automatic verification of competitive stochastic systems , 2012, Formal Methods in System Design.

[24]  Thomas A. Henzinger,et al.  Concurrent omega-regular games , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[25]  Bengt Jonsson,et al.  A logic for reasoning about time and reliability , 1990, Formal Aspects of Computing.

[26]  Krishnendu Chatterjee,et al.  Strategy improvement for concurrent reachability and turn-based stochastic safety games☆☆☆ , 2013, J. Comput. Syst. Sci..

[27]  Gabriel Santos,et al.  Multi-player Equilibria Verification for Concurrent Stochastic Games , 2020, QEST.

[28]  Krishnendu Chatterjee,et al.  On Nash Equilibria in Stochastic Games , 2004, CSL.

[29]  Shalabh Bhatnagar,et al.  Two-Timescale Algorithms for Learning Nash Equilibria in General-Sum Stochastic Games , 2015, AAMAS.

[30]  Krishnendu Chatterjee,et al.  Value Iteration , 2008, 25 Years of Model Checking.

[31]  Jennifer H. Wisecaver,et al.  Genome wide analysis of the transition to pathogenic lifestyles in Magnaporthales fungi , 2018, Scientific Reports.

[32]  M. Nowak,et al.  Evolution of cooperation in stochastic games , 2018, Nature.

[33]  L. Shapley,et al.  Stochastic Games* , 1953, Proceedings of the National Academy of Sciences.

[34]  Nikolaj Bjørner,et al.  Z3: An Efficient SMT Solver , 2008, TACAS.

[35]  Marta Z. Kwiatkowska,et al.  PRISM-games: verification and strategy synthesis for stochastic multi-player games with multiple objectives , 2017, International Journal on Software Tools for Technology Transfer.

[36]  Christos H. Papadimitriou,et al.  On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..

[37]  C. E. Lemke,et al.  Equilibrium Points of Bimatrix Games , 1964 .

[38]  D. Fudenberg,et al.  Subgame-perfect equilibria of finite- and infinite-horizon games , 1981 .

[39]  Pranav Ashok,et al.  Approximating Values of Generalized-Reachability Stochastic Games , 2019, LICS.

[40]  Huawang Qin,et al.  Rational quantum secret sharing , 2018, Scientific Reports.

[41]  Quanyan Zhu,et al.  Dynamic policy-based IDS configuration , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[42]  J. Neumann Zur Theorie der Gesellschaftsspiele , 1928 .

[43]  Martin J. Osborne,et al.  An Introduction to Game Theory , 2003 .

[44]  Luca de Alfaro,et al.  Computing Minimum and Maximum Reachability Times in Probabilistic Systems , 1999, CONCUR.

[45]  Patricia Bouyer,et al.  Mixed Nash Equilibria in Concurrent Games , 2015 .

[46]  Taolue Chen,et al.  On Stochastic Games with Multiple Objectives , 2013, MFCS.

[47]  Michael Wooldridge,et al.  EVE: A Tool for Temporal Equilibrium Analysis , 2018, ATVA.

[48]  Annabelle McIver,et al.  Results on the quantitative μ-calculus qMμ , 2007, TOCL.

[49]  Marta Z. Kwiatkowska,et al.  Automated Verification and Strategy Synthesis for Probabilistic Systems , 2013, ATVA.

[50]  Krishnendu Chatterjee,et al.  Verification of Markov Decision Processes Using Learning Algorithms , 2014, ATVA.

[51]  Andrea Bianco,et al.  Model Checking of Probabalistic and Nondeterministic Systems , 1995, FSTTCS.

[52]  Romain Brenguier,et al.  PRALINE: A Tool for Computing Nash Equilibria in Concurrent Games , 2013, CAV.

[53]  Michael Ummels,et al.  Stochastic multiplayer games: theory and algorithms , 2010 .

[54]  Eitan Zemel,et al.  Nash and correlated equilibria: Some complexity considerations , 1989 .

[55]  Gabriel Santos,et al.  Equilibria-based Probabilistic Model Checking for Concurrent Stochastic Games , 2018, FM.

[56]  John Fearnley,et al.  The Complexity of the Simplex Method , 2015, STOC.

[57]  Marta Z. Kwiatkowska,et al.  Compositional strategy synthesis for stochastic games with multiple objectives , 2017, Inf. Comput..

[58]  T. Henzinger,et al.  Stochastic o-regular games , 2007 .

[59]  Alois Knoll,et al.  GAVS+: An Open Platform for the Research of Algorithmic Game Solving , 2011, TACAS.

[60]  Gabriel Santos,et al.  Automated Verification of Concurrent Stochastic Games , 2018, QEST.

[61]  Thomas A. Henzinger,et al.  Concurrent reachability games , 2007, Theor. Comput. Sci..

[62]  Paul Walker,et al.  Zermelo and the Early History of Game Theory , 2001, Games Econ. Behav..

[63]  Emden R. Gansner,et al.  Drawing graphs with dot , 2006 .

[64]  T. E. S. Raghavan,et al.  Algorithms for stochastic games — A survey , 1991, ZOR Methods Model. Oper. Res..

[65]  Benjamin Monmege,et al.  Interval iteration algorithm for MDPs and IMDPs , 2017, Theor. Comput. Sci..

[66]  Yoav Shoham,et al.  Simple search methods for finding a Nash equilibrium , 2004, Games Econ. Behav..

[67]  J. Kemeny,et al.  Denumerable Markov chains , 1969 .

[68]  Michael Wooldridge,et al.  Equilibrium Design for Concurrent Games , 2021, CONCUR.

[69]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[70]  Annabelle McIver,et al.  Results on the quantitative mu-calculus qMu , 2003, ArXiv.

[71]  John F. Nash,et al.  EQUILIBRIUM POINTS IN 𝑛-PERSON GAMES , 2020 .

[72]  Jin Song Dong,et al.  Verification of Strong Nash-equilibrium for Probabilistic BAR Systems , 2018, ICFEM.

[73]  Patricia Bouyer,et al.  Stochastic Equilibria under Imprecise Deviations in Terminal-Reward Concurrent Games , 2016, GandALF.

[74]  Véronique Bruyère,et al.  The Complexity of Subgame Perfect Equilibria in Quantitative Reachability Games (full version) , 2019, CONCUR.

[75]  L. Shapley A note on the Lemke-Howson algorithm , 1974 .

[76]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[77]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[78]  Serdar Yüksel,et al.  Distributionally consistent price taking equilibria in stochastic dynamic games , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[79]  Jan Kretínský,et al.  Value Iteration for Simple Stochastic Games: Stopping Criterion and Learning Algorithm , 2018, CAV.

[80]  Donald A. Martin,et al.  The determinacy of Blackwell games , 1998, Journal of Symbolic Logic.

[81]  Kristoffer Arnsfelt Hansen,et al.  The Complexity of Solving Reachability Games Using Value and Strategy Iteration , 2013, Theory of Computing Systems.

[82]  Krishnendu Chatterjee,et al.  A survey of stochastic ω-regular games , 2012, J. Comput. Syst. Sci..