PFKFB4 Drives the Oncogenicity in TP53-Mutated Hepatocellular Carcinoma in a Phosphatase-Dependent Manner

[1]  I. Ng,et al.  Cellular heterogeneity and plasticity in liver cancer. , 2021, Seminars in cancer biology.

[2]  Gregory J. Gores,et al.  A global view of hepatocellular carcinoma: trends, risk, prevention and management , 2019, Nature Reviews Gastroenterology & Hepatology.

[3]  Gabriela Kalna,et al.  Improving the metabolic fidelity of cancer models with a physiological cell culture medium , 2019, Science Advances.

[4]  A. Jemal,et al.  Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries , 2018, CA: a cancer journal for clinicians.

[5]  M. Kudo,et al.  Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial , 2018, The Lancet.

[6]  K. Rajapakshe,et al.  Metabolic enzyme PFKFB4 activates transcriptional coactivator SRC-3 to drive breast cancer , 2018, Nature.

[7]  Nicola Zamboni,et al.  6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 is essential for p53-null cancer cells , 2017, Oncogene.

[8]  Xin Gao,et al.  Physiologic Medium Rewires Cellular Metabolism and Reveals Uric Acid as an Endogenous Inhibitor of UMP Synthase , 2017, Cell.

[9]  Yonghuai Feng,et al.  mTOR up-regulation of PFKFB3 is essential for acute myeloid leukemia cell survival. , 2017, Biochemical and biophysical research communications.

[10]  Miao Li,et al.  TSC1/2 mutations define a molecular subset of HCC with aggressive behaviour and treatment implication , 2016, Gut.

[11]  Pingping Shen,et al.  Phosphorylation of PPARγ at Ser84 promotes glycolysis and cell proliferation in hepatocellular carcinoma by targeting PFKFB4 , 2016, Oncotarget.

[12]  Chun-Ming Wong,et al.  Transketolase counteracts oxidative stress to drive cancer development , 2016, Proceedings of the National Academy of Sciences.

[13]  J. Trent,et al.  Targeting the sugar metabolism of tumors with a first-in-class 6-phosphofructo-2-kinase (PFKFB4) inhibitor , 2015, Oncotarget.

[14]  B. van Steensel,et al.  Easy quantitative assessment of genome editing by sequence trace decomposition , 2014, Nucleic acids research.

[15]  Neville E. Sanjana,et al.  Improved vectors and genome-wide libraries for CRISPR screening , 2014, Nature Methods.

[16]  Feng Liu,et al.  mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. , 2013, Cell metabolism.

[17]  Ning Leng,et al.  EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments , 2013, Bioinform..

[18]  A. Schulze,et al.  Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism , 2013, Cancer & metabolism.

[19]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[20]  G. Chen,et al.  Sorafenib Inhibits Hypoxia-Inducible Factor-1α Synthesis: Implications for Antiangiogenic Activity in Hepatocellular Carcinoma , 2012, Clinical Cancer Research.

[21]  O. Mir,et al.  Sorafenib-Induced Hepatocellular Carcinoma Cell Death Depends on Reactive Oxygen Species Production In Vitro and In Vivo , 2012, Molecular Cancer Therapeutics.

[22]  G. Reifenberger,et al.  RNAi screening in glioma stem-like cells identifies PFKFB4 as a key molecule important for cancer cell survival , 2012, Oncogene.

[23]  Gavin Kelly,et al.  Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival. , 2012, Cancer discovery.

[24]  Guodong Yang,et al.  The Fundamental Role of the p53 Pathway in Tumor Metabolism and Its Implication in Tumor Therapy , 2012, Clinical Cancer Research.

[25]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[26]  Christine Bayer,et al.  Acute versus chronic hypoxia: why a simplified classification is simply not enough. , 2011, International journal of radiation oncology, biology, physics.

[27]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[28]  Ji Zhang,et al.  Role of BNIP3 and NIX in cell death, autophagy, and mitophagy , 2009, Cell Death and Differentiation.

[29]  Wei Li,et al.  Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis , 2009, Proceedings of the National Academy of Sciences.

[30]  S. Paggi,et al.  Sorafenib in Advanced Hepatocellular Carcinoma , 2008 .

[31]  N. Denko,et al.  Hypoxia, HIF1 and glucose metabolism in the solid tumour , 2008, Nature Reviews Cancer.

[32]  S. Ryter,et al.  Heme oxygenase-1: redox regulation of a stress protein in lung and cell culture models. , 2005, Antioxidants & redox signaling.

[33]  M. Tomita,et al.  Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. , 2003, Journal of proteome research.

[34]  Masaru Tomita,et al.  Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. , 2002, Analytical chemistry.

[35]  T. Soga,et al.  Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. , 2000, Analytical chemistry.

[36]  H. Mizuguchi,et al.  Crystal Structure of the H256A Mutant of Rat Testis Fructose-6-phosphate,2-kinase/Fructose-2,6-bisphosphatase , 1999, The Journal of Biological Chemistry.

[37]  J. Deisenhofer,et al.  The crystal structure of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase reveals distinct domain homologies. , 1996, Structure.

[38]  O. Warburg [Origin of cancer cells]. , 1956, Oncologia.