Phase transition of spacetime

In this work, we find both black holes and particle can be described by the complex Kerr-Newman metric and converted to each other through a phase transition. After the phase transition point at Planck energy, the particle’s imaginary radii are realized and converted into a black hole. In 4-D spacetime, the 3-D imaginary space is compacted to its 1-D temporal dimension. In the hidden 3-D imaginary space, a Dirac electron appears as an equivalent Schwarzschild black hole with a mass of J/m (spin angular momentum per unit mass), which reveals the geometric origin of wave nature and spin in quantum mechanics. This work provides strong evidence for ER=EPR.

[1]  A. Burinskii New Path to Unification of Gravity with Particle Physics , 2016, 1701.01025.

[2]  A. Burinskii Source of the Kerr-Newman solution as a gravitating bag model: 50 years of the problem of the source of the Kerr solution , 2016 .

[3]  Pisin Chen,et al.  Naked Black Hole Firewalls. , 2015, Physical review letters.

[4]  Yakov Shlapentokh-Rothman,et al.  Stationary axisymmetric black holes with matter , 2015, Communications in Analysis and Geometry.

[5]  L. Susskind,et al.  Cool horizons for entangled black holes , 2013, 1306.0533.

[6]  G. Dvali,et al.  Black hole's quantum N‐portrait , 2011, 1112.3359.

[7]  A. Burinskii Gravitational strings beyond quantum theory: Electron as a closed heterotic string , 2011, 1109.3872.

[8]  A. Burinskii The Dirac-Kerr-Newman electron , 2005, hep-th/0507109.

[9]  A. Burinskii Complex Kerr geometry and nonstationary Kerr solutions , 2002, gr-qc/0212048.

[10]  J. G. Pereira,et al.  Kerr–Newman Solution as a Dirac Particle , 2002, hep-th/0210103.

[11]  A. Burinskii Kerr Spinning Particle , 2000 .

[12]  A. Burinskii Super-Kerr-Newman solution to broken N = 2 supergravity , 1999 .

[13]  G. Magli,et al.  Kerr-Schild approach to the boosted Kerr solution , 1999, gr-qc/9904012.

[14]  A. Burinskii Kerr spinning particle, strings and superparticle models , 1997, hep-th/9704102.

[15]  Sen,et al.  Rotating black holes which saturate a Bogomol'nyi bound. , 1995, Physical review. D, Particles and fields.

[16]  A. Sen Extremal black holes and elementary string states , 1995, hep-th/9504147.

[17]  B. Greene,et al.  Black hole condensation and the unification of string vacua , 1995, hep-th/9504145.

[18]  H. Nishino Stationary axisymmetric black holes, N = 2 superstring, and self-dual gauge or gravity fields , 1995, hep-th/9504142.

[19]  A. Strominger Massless black holes and conifolds in string theory , 1995, hep-th/9504090.

[20]  E. Witten String theory dynamics in various dimensions , 1995, hep-th/9503124.

[21]  M. Israelit,et al.  Classical models of elementary particles with spin , 1995 .

[22]  P. Townsend The eleven-dimensional supermembrane revisited , 1995, hep-th/9501068.

[23]  A. Sen Black hole solutions in heterotic string theory on a torus , 1994, hep-th/9411187.

[24]  P. Townsend,et al.  Unity of superstring dualities , 1994, hep-th/9410167.

[25]  M. Duff,et al.  Massive string states as extreme black holes , 1994, hep-th/9406105.

[26]  L. Susskind,et al.  Asymptotic level density in heterotic string theory and rotating black holes , 1994, hep-th/9405117.

[27]  L. Susskind,et al.  Black hole entropy in canonical quantum gravity and superstring theory. , 1994, Physical review. D, Particles and fields.

[28]  R. Minasian,et al.  New black hole, string and membrane solutions of the four-dimensional heterotic string , 1993, hep-th/9311120.

[29]  L. Susskind Some speculations about black hole entropy in string theory , 1993, hep-th/9309145.

[30]  A. Burinskii String-Like Structures in Complex Kerr Geometry , 1993, gr-qc/9303003.

[31]  Sen,et al.  Rotating charged black hole solution in heterotic string theory. , 1992, Physical review letters.

[32]  C. López Internal structure of a classical spinning electron , 1992 .

[33]  F. Wilczek,et al.  Black holes as elementary particles , 1992, hep-th/9202014.

[34]  Brown,et al.  Complex Kerr-Newman geometry and black-hole thermodynamics. , 1991, Physical review letters.

[35]  Gerard 't Hooft,et al.  The black hole interpretation of string theory , 1990 .

[36]  C. López Extended model of the electron in general relativity , 1984 .

[37]  A. Barut,et al.  Zitterbewegung and the internal geometry of the electron , 1981 .

[38]  S. Hawking,et al.  Cosmological Event Horizons, Thermodynamics, and Particle Creation , 1977 .

[39]  Stephen W. Hawking,et al.  Gravitational radiation from colliding black holes , 1971 .

[40]  W. Israel Source of the kerr metric , 1970 .

[41]  B. Carter Global structure of the Kerr family of gravitational fields , 1968 .

[42]  E. Newman,et al.  Metric of a Rotating, Charged Mass , 1965 .

[43]  Albert Einstein,et al.  The Particle Problem in the General Theory of Relativity , 1935 .

[44]  D. D. Ivanenko,et al.  Gravitational strings in models for elementary particles , 1975 .

[45]  E. Newman Maxwell's equations and complex Minkowski space , 1973 .

[46]  A. Schild,et al.  Solutions of the Einstein and Einstein‐Maxwell Equations , 1969 .