A Faber-Krahn inequality for Robin problems in any space dimension
暂无分享,去创建一个
[1] R. Sperb. An isoperimetric inequality for the first eigenvalue of the Laplacian under Robin boundary conditions , 1992 .
[2] On the motion of rigid bodies in a viscous incompressible fluid , 2003 .
[3] Pavel Doktor. Approximation of domains with Lipschitzian boundary , 1976 .
[4] Daniel Daners,et al. Dirichlet problems on varying domains , 2003 .
[5] Bernhard Kawohl,et al. Rearrangements and Convexity of Level Sets in PDE , 1985 .
[6] L. Milne‐Thomson. A Treatise on the Theory of Bessel Functions , 1945, Nature.
[7] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[8] G. A. Watson. A treatise on the theory of Bessel functions , 1944 .
[9] L. Ahlfors. Conformal Invariants: Topics in Geometric Function Theory , 1973 .
[10] R. P. Sperb. Untere und obere Schranken für den tiefsten Eigenwert der elastisch gestützten Membran , 1972 .
[11] R. Osserman. The isoperimetric inequality , 1978 .
[12] L. E. Fraenkel,et al. An Introduction to Maximum Principles and Symmetry in Elliptic Problems , 2000 .
[13] Minimization problems for eigenvalues of the Laplacian , 2003 .
[14] L. Payne. Isoperimetric Inequalities and Their Applications , 1967 .
[15] P. Mcmullen. GEOMETRIC INEQUALITIES (Grundlehren der mathematischen Wissenschaften 285) , 1989 .
[16] E. Krahn,et al. Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises , 1925 .
[17] L. Evans. Measure theory and fine properties of functions , 1992 .
[18] G. Pólya,et al. Isoperimetric inequalities in mathematical physics , 1951 .
[19] Michael Frazier,et al. Studies in Advanced Mathematics , 2004 .
[20] Joseph Hersch,et al. Sur la fréquence fondamentale d'une membrane vibrante: évaluations par défaut et principe de maximum , 1960 .
[21] Marie-Hélène Bossel. Membranes élastiquement liées: extension du théorème de Rayleigh-Faber-Krahn et de l'inégalité de Cheeger , 1986 .
[22] G. Polya,et al. Isoperimetric Inequalities in Mathematical Physics. (AM-27), Volume 27 , 1951 .
[23] C. Bandle. Isoperimetric inequalities and applications , 1980 .
[24] Daniel Daners,et al. Robin boundary value problems on arbitrary domains , 2000 .
[25] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[26] W. Rudin. Real and complex analysis , 1968 .
[27] Longueurs extrémales et fonctionnelles de domaine , 1986 .
[28] Marie-Hélène Bossel. Membranes élastiquement liées inhomogènes ou sur une surface: Une nouvelle extension du théorème isopérimétrique de Rayleigh-Faber-Krahn , 1988 .
[29] H. Fédérer. Geometric Measure Theory , 1969 .
[30] S. Agmon. On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems , 1962 .
[31] H. Whitney. A Function Not Constant on a Connected Set of Critical Points , 1935 .
[32] R. Sperb. Bounds for the first eigenvalue of the elastically supported membrane on convex domains , 2003 .
[33] Par Marie-Hélèe Bossel. Elastically supported membranes inhomogeneous or on a surface: a new extension of the isoperimetric Rayleigh-Faber-Krahn , 1988 .
[34] E. N. Dancer,et al. Domain Perturbation for Elliptic Equations Subject to Robin Boundary Conditions , 1997 .
[35] R. Phillips,et al. On the scattering frequencies of the laplace operator for exterior domains , 1972 .
[36] H. Weinberger,et al. Lower Bounds for Vibration Frequencies of Elastically Supported Membranes and Plates , 1957 .
[37] W. Arendt,et al. The Laplacian with Robin Boundary Conditions on Arbitrary Domains , 2003 .