A Faber-Krahn inequality for Robin problems in any space dimension

We prove a Faber-Krahn inequality for the first eigenvalue of the Laplacian with Robin boundary conditions, asserting that amongst all Lipschitz domains of fixed volume, the ball has the smallest first eigenvalue. We prove the result in all space dimensions using ideas from [M.-H. Bossel, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), 47–50], where a proof for smooth domains in the plane was given. The method does not involve the use of symmetrisation arguments. The results also imply variants of the Cheeger inequality for the first eigenvalue.

[1]  R. Sperb An isoperimetric inequality for the first eigenvalue of the Laplacian under Robin boundary conditions , 1992 .

[2]  On the motion of rigid bodies in a viscous incompressible fluid , 2003 .

[3]  Pavel Doktor Approximation of domains with Lipschitzian boundary , 1976 .

[4]  Daniel Daners,et al.  Dirichlet problems on varying domains , 2003 .

[5]  Bernhard Kawohl,et al.  Rearrangements and Convexity of Level Sets in PDE , 1985 .

[6]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[7]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[8]  G. A. Watson A treatise on the theory of Bessel functions , 1944 .

[9]  L. Ahlfors Conformal Invariants: Topics in Geometric Function Theory , 1973 .

[10]  R. P. Sperb Untere und obere Schranken für den tiefsten Eigenwert der elastisch gestützten Membran , 1972 .

[11]  R. Osserman The isoperimetric inequality , 1978 .

[12]  L. E. Fraenkel,et al.  An Introduction to Maximum Principles and Symmetry in Elliptic Problems , 2000 .

[13]  Minimization problems for eigenvalues of the Laplacian , 2003 .

[14]  L. Payne Isoperimetric Inequalities and Their Applications , 1967 .

[15]  P. Mcmullen GEOMETRIC INEQUALITIES (Grundlehren der mathematischen Wissenschaften 285) , 1989 .

[16]  E. Krahn,et al.  Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises , 1925 .

[17]  L. Evans Measure theory and fine properties of functions , 1992 .

[18]  G. Pólya,et al.  Isoperimetric inequalities in mathematical physics , 1951 .

[19]  Michael Frazier,et al.  Studies in Advanced Mathematics , 2004 .

[20]  Joseph Hersch,et al.  Sur la fréquence fondamentale d'une membrane vibrante: évaluations par défaut et principe de maximum , 1960 .

[21]  Marie-Hélène Bossel Membranes élastiquement liées: extension du théorème de Rayleigh-Faber-Krahn et de l'inégalité de Cheeger , 1986 .

[22]  G. Polya,et al.  Isoperimetric Inequalities in Mathematical Physics. (AM-27), Volume 27 , 1951 .

[23]  C. Bandle Isoperimetric inequalities and applications , 1980 .

[24]  Daniel Daners,et al.  Robin boundary value problems on arbitrary domains , 2000 .

[25]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[26]  W. Rudin Real and complex analysis , 1968 .

[27]  Longueurs extrémales et fonctionnelles de domaine , 1986 .

[28]  Marie-Hélène Bossel Membranes élastiquement liées inhomogènes ou sur une surface: Une nouvelle extension du théorème isopérimétrique de Rayleigh-Faber-Krahn , 1988 .

[29]  H. Fédérer Geometric Measure Theory , 1969 .

[30]  S. Agmon On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems , 1962 .

[31]  H. Whitney A Function Not Constant on a Connected Set of Critical Points , 1935 .

[32]  R. Sperb Bounds for the first eigenvalue of the elastically supported membrane on convex domains , 2003 .

[33]  Par Marie-Hélèe Bossel Elastically supported membranes inhomogeneous or on a surface: a new extension of the isoperimetric Rayleigh-Faber-Krahn , 1988 .

[34]  E. N. Dancer,et al.  Domain Perturbation for Elliptic Equations Subject to Robin Boundary Conditions , 1997 .

[35]  R. Phillips,et al.  On the scattering frequencies of the laplace operator for exterior domains , 1972 .

[36]  H. Weinberger,et al.  Lower Bounds for Vibration Frequencies of Elastically Supported Membranes and Plates , 1957 .

[37]  W. Arendt,et al.  The Laplacian with Robin Boundary Conditions on Arbitrary Domains , 2003 .