Electrostatic quantum dots in silicene

We study electrostatic quantum dot confinement for charge carriers in silicene. The confinement is formed by vertical electric field surrounding the quantum dot area. The resulting energy gap in the outside of the quantum dot traps the carriers within, and the difference of electrostatic potentials on the buckled silicene sublattices produces nonzero carrier masses outside the quantum dot. We study the electrostatic confinement defined inside a silicene flake with both the atomistic tight-binding approach as well as with the continuum approximation for a circularly symmetric electrostatic potential. We find localization of the states within the quantum dot and their decoupling from the edge that makes the spectrum of the localized states independent of the crystal termination. For an armchair edge of the flake removal of the intervalley scattering by the electrostatic confinement is found.

[1]  Pol Torres Alvarez,et al.  First Principles Calculations , 2018 .

[2]  L. Vandersypen,et al.  Electrostatic confinement of electrons in graphene nanoribbons , 2008, 0812.4038.

[3]  Dirac gap-induced graphene quantum dot in an electrostatic potential , 2011, 1102.3488.

[4]  Jiaxin Zheng,et al.  Giant magnetoresistance in silicene nanoribbons. , 2012, Nanoscale.

[5]  F. Peeters,et al.  Quasibound states of quantum dots in single and bilayer graphene , 2007, 0711.4446.

[6]  Linyang Li,et al.  Structures, Energetics, and Electronic Properties of Multifarious Stacking Patterns for High-Buckled and Low-Buckled Silicene on the MoS2 Substrate , 2014 .

[7]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[8]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[9]  S. Bednarek,et al.  Modeling of electronic properties of electrostatic quantum dots , 2003 .

[10]  F. Guinea,et al.  Electron-electron interactions and charging effects in graphene quantum dots , 2007, 0707.2948.

[11]  Yanli Wang,et al.  Electronic structures of silicene/GaS heterosheets , 2013 .

[12]  J. Bardarson,et al.  Electrostatic confinement of electrons in an integrable graphene quantum dot. , 2009, Physical review letters.

[13]  V. A. Saroka,et al.  Electro-absorption of silicene and bilayer graphene quantum dots , 2016, 1603.09662.

[14]  I. Berbezier,et al.  van der Waals Heteroepitaxy of Germanene Islands on Graphite. , 2016, The journal of physical chemistry letters.

[15]  G. Burkard,et al.  Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides , 2013, 1310.7720.

[16]  Fock-Darwin states of dirac electrons in graphene-based artificial atoms. , 2006, Physical review letters.

[17]  E. Romera,et al.  Band inversion at critical magnetic fields in a silicene quantum dot , 2015, 1703.07581.

[18]  T. Ozaki,et al.  Band structure of silicene on zirconium diboride (0001) thin-film surface: Convergence of experiment and calculations in the one-Si-atom Brillouin zone , 2014, 1407.2698.

[19]  Hiroyuki Kawai,et al.  Experimental evidence for epitaxial silicene on diboride thin films. , 2012, Physical review letters.

[20]  G. A. Farias,et al.  Electronic and optical properties of a circular graphene quantum dot in a magnetic field : influence of the boundary conditions , 2011 .

[21]  N. Nagaosa,et al.  Edge states in silicene nanodisks , 2013, 1308.0107.

[22]  E. J. Mele,et al.  Quantum spin Hall effect in graphene. , 2004, Physical review letters.

[23]  M. Fanciulli,et al.  Getting through the Nature of Silicene: An sp2–sp3 Two-Dimensional Silicon Nanosheet , 2013 .

[24]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[25]  Motohiko Ezawa,et al.  Valley-polarized metals and quantum anomalous Hall effect in silicene. , 2012, Physical review letters.

[26]  Cheng-Cheng Liu,et al.  Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin , 2011, 1108.2933.

[27]  Cheng-Cheng Liu,et al.  Valley-polarized quantum anomalous Hall effect in silicene. , 2013, Physical review letters.

[28]  Daniele Chiappe,et al.  Two‐Dimensional Si Nanosheets with Local Hexagonal Structure on a MoS2 Surface , 2014, Advanced materials.

[29]  Patrick Vogt,et al.  Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. , 2012, Physical review letters.

[30]  Andre Stesmans,et al.  Can silicon behave like graphene? A first-principles study , 2010 .

[31]  L. Meng,et al.  Buckled silicene formation on Ir(111). , 2013, Nano letters.

[32]  F M Peeters,et al.  Tunable quantum dots in bilayer graphene. , 2007, Nano letters.

[33]  Cheng-Cheng Liu,et al.  Quantum spin Hall effect in silicene and two-dimensional germanium. , 2011, Physical review letters.

[34]  V. Fal’ko,et al.  Electrically tunable band gap in silicene , 2011, 1112.4792.

[35]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[36]  M. I. Katsnelson,et al.  Chiral tunnelling and the Klein paradox in graphene , 2006 .

[37]  Magnetic confinement of massless Dirac fermions in graphene. , 2006, Physical review letters.

[38]  D. Jana,et al.  A theoretical review on electronic, magnetic and optical properties of silicene , 2016, Reports on progress in physics. Physical Society.

[39]  K. Efetov,et al.  Quantum dots in graphene. , 2007, Physical review letters.

[40]  G. A. Farias,et al.  Energy levels of triangular and hexagonal graphene quantum dots: A comparative study between the tight-binding and Dirac equation approach , 2011, 1111.5702.

[41]  M. Berry,et al.  Neutrino billiards: time-reversal symmetry-breaking without magnetic fields , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[42]  M. Ezawa,et al.  Giant magnetoresistance and perfect spin filter in silicene, germanene, and stanene , 2013, 1312.1848.

[43]  E. Kaxiras,et al.  Topological frustration in graphene nanoflakes: magnetic order and spin logic devices. , 2009, Physical review letters.

[44]  Shao-ping Lu,et al.  Quantum conductance of graphene nanoribbons with edge defects , 2006, cond-mat/0609009.

[45]  M. Sigrist,et al.  Electronic transport properties of graphene nanoribbons , 2009, 0907.5243.

[46]  A. Molle,et al.  Two-dimensional silicon: the advent of silicene , 2016 .

[47]  Dapeng Yu,et al.  Tunable bandgap in silicene and germanene. , 2012, Nano letters.

[48]  Madan Dubey,et al.  Silicene field-effect transistors operating at room temperature. , 2015, Nature nanotechnology.

[49]  E. Romera,et al.  Identifying topological-band insulator transitions in silicene and other 2D gapped Dirac materials by means of R\'enyi-Wehrl entropy , 2015, 1502.02515.

[50]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[51]  M. Ezawa A topological insulator and helical zero mode in silicene under an inhomogeneous electric field , 2012, 1201.3687.

[52]  I. Berbezier,et al.  Formation of Silicene Nanosheets on Graphite. , 2016, ACS nano.

[53]  Peng Cheng,et al.  Evidence of silicene in honeycomb structures of silicon on Ag(111). , 2012, Nano letters.

[54]  Abdelkader Kara,et al.  Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene , 2010 .

[55]  G. Pourtois,et al.  Engineering the electronic properties of silicene by tuning the composition of MoX2 and GaX (X = S,Se,Te) chalchogenide templates , 2014 .

[56]  M. Ezawa Coulomb Blockade in Graphene Nanodisks , 2007, 0712.1270.

[57]  West,et al.  N-electron ground state energies of a quantum dot in magnetic field. , 1993, Physical review letters.