Multiresolution 3-D range segmentation using focus cues

This paper describes a novel system for computing a three-dimensional (3-D) range segmentation of an arbitrary visible scene using focus information. The process of range segmentation is divided into three steps: an initial range classification, a surface merging process, and a 3-D multiresolution range segmentation. First, range classification is performed to obtain quantized range estimates. The range classification is performed by analyzing focus cues within a Bayesian estimation framework. A combined energy functional measures the degree of focus and the Gibbs distribution of the class field. The range classification provides an initial range segmentation. Second, a statistical merging process is performed to merge the initial surface segments. This gives a range segmentation at a coarse resolution. Third, 3-D multiresolution range segmentation (3-D MRS) is performed to refine the range segmentation into finer resolutions. The proposed range segmentation method does not require initial depth estimates, it allows the analysis of scenes containing multiple objects, and it provides a rich description of the 3-D structure of a scene.

[1]  A. Lynn Abbott,et al.  Active Stereo: Integrating Disparity, Vergence, Focus, Aperture and Calibration for Surface Estimation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Shang-Hong Lai,et al.  A Generalized Depth Estimation Algorithm with a Single Image , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Sridhar Lakshmanan,et al.  Simultaneous Parameter Estimation and Segmentation of Gibbs Random Fields Using Simulated Annealing , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Muralidhara Subbarao,et al.  Accurate Recovery of Three-Dimensional Shape from Image Focus , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Charles A. Bouman,et al.  Multiple Resolution Segmentation of Textured Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Trevor Darrell,et al.  Pyramid based depth from focus , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Stephen T. Barnard,et al.  Stochastic stereo matching over scale , 1989, International Journal of Computer Vision.

[8]  Changhoon Yim,et al.  Bayesian range segmentation using focus cues , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[9]  Glenn Healey,et al.  Markov Random Field Models for Unsupervised Segmentation of Textured Color Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Alan C. Bovik,et al.  The Texas active vision testbed , 1994, Proceedings of IEEE International Conference on Systems, Man and Cybernetics.

[11]  Hyun Seung Yang,et al.  A systematic way for region-based image segmentation based on Markov Random Field model , 1994, Pattern Recognit. Lett..

[12]  Shree K. Nayar,et al.  Shape from Focus , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Ramakant Nevatia,et al.  Segmented descriptions of 3-D surfaces , 1987, IEEE Journal on Robotics and Automation.

[14]  Changhoon Yim,et al.  Range segmentation using focus cues , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[15]  Yee-Hong Yang,et al.  Multiresolution Color Image Segmentation , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  H.N. Nair,et al.  Robust focus ranging , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Peter Lawrence,et al.  An Investigation of Methods for Determining Depth from Focus , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  D. Cooper,et al.  SimpleParallel Hierarchical andRelaxation Algorithms forSegmenting Noncausal MarkovianRandom Fields , 1987 .

[19]  John W. Woods,et al.  Two-dimensional discrete Markovian fields , 1972, IEEE Trans. Inf. Theory.

[20]  Haluk Derin,et al.  Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  P. Grossmann,et al.  Depth from focus , 1987, Pattern Recognit. Lett..

[22]  Rama Chellappa,et al.  Unsupervised Texture Segmentation Using Markov Random Field Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Donald Geman,et al.  Bayes Smoothing Algorithms for Segmentation of Binary Images Modeled by Markov Random Fields , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Alex Pentland,et al.  A New Sense for Depth of Field , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Muralidhara Subbarao,et al.  Depth recovery from blurred edges , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[26]  Stephen M. Pizer,et al.  A Multiresolution Hierarchical Approach to Image Segmentation Based on Intensity Extrema , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Steven M. LaValle,et al.  A Bayesian Segmentation Methodology for Parametric Image Models , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Shree K. Nayar,et al.  Shape from focus system , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Eric Paul Krotkov,et al.  Active Computer Vision by Cooperative Focus and Stereo , 1989, Springer Series in Perception Engineering.

[31]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[32]  Bruce G. Batchelor,et al.  Edge-Region-Based Segmentation of Range Images , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Ramesh C. Jain,et al.  Segmentation through Variable-Order Surface Fitting , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  David B. Cooper,et al.  Bayesian Clustering for Unsupervised Estimation of Surface and Texture Models , 1988, IEEE Trans. Pattern Anal. Mach. Intell..