A level-set method for magnetic substance simulation

We present a versatile numerical approach to simulating various magnetic phenomena using a level-set method. At the heart of our method lies a novel two-way coupling mechanism between a magnetic field and a magnetizable mechanical system, which is based on the interfacial Helmholtz force drawn from the Minkowski form of the Maxwell stress tensor. We show that a magnetic-mechanical coupling system can be solved as an interfacial problem, both theoretically and computationally. In particular, we employ a Poisson equation with a jump condition across the interface to model the mechanical-to-magnetic interaction and a Helmholtz force on the free surface to model the magnetic-to-mechanical effects. Our computational framework can be easily integrated into a standard Euler fluid solver, enabling both simulation and visualization of a complex magnetic field and its interaction with immersed magnetizable objects in a large domain. We demonstrate the efficacy of our method through an array of magnetic substance simulations that exhibit rich geometric and dynamic characteristics, encompassing ferrofluid, rigid magnetic body, deformable magnetic body, and multi-phase couplings.

[1]  Stefan Jeschke,et al.  Water Wave Animation via Wavefront Parameter Interpolation , 2015, ACM Trans. Graph..

[2]  Chenfanfu Jiang,et al.  Anisotropic elastoplasticity for cloth, knit and hair frictional contact , 2017, ACM Trans. Graph..

[3]  Ronald Fedkiw,et al.  A Boundary Condition Capturing Method for Multiphase Incompressible Flow , 2000, J. Sci. Comput..

[4]  Yuan Cao,et al.  Formation of hexagonal pattern of ferrofluid in magnetic field , 2014 .

[5]  Ronald Fedkiw,et al.  Two-Way Coupled SPH and Particle Level Set Fluid Simulation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[6]  Andre Pradhana,et al.  Drucker-prager elastoplasticity for sand animation , 2016, ACM Trans. Graph..

[7]  E. Vouga,et al.  Discrete viscous threads , 2010, ACM Trans. Graph..

[8]  WojtanChris,et al.  Double bubbles sans toil and trouble , 2015 .

[9]  M. Gross,et al.  A multiscale approach to mesh-based surface tension flows , 2010, ACM Trans. Graph..

[10]  Hongan Wang,et al.  Staggered meshless solid-fluid coupling , 2012, ACM Trans. Graph..

[11]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[12]  A. Ghaffari,et al.  CFD simulation of equilibrium shape and coalescence of ferrofluid droplets subjected to uniform magnetic field , 2015 .

[13]  Markus H. Gross,et al.  Two-scale particle simulation , 2011, ACM Trans. Graph..

[14]  Eftychios Sifakis,et al.  An adaptive generalized interpolation material point method for simulating elastoplastic materials , 2017, ACM Trans. Graph..

[15]  Dominik L. Michels,et al.  On the accurate large-scale simulation of ferrofluids , 2019, ACM Trans. Graph..

[16]  Robert Bridson,et al.  Linear-time smoke animation with vortex sheet meshes , 2012, SCA '12.

[17]  M. Gross,et al.  A multiscale approach to mesh-based surface tension flows , 2010, SIGGRAPH 2010.

[18]  Theodore Kim,et al.  Closest point turbulence for liquid surfaces , 2013, TOGS.

[19]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[20]  Eftychios Sifakis,et al.  A scalable schur-complement fluids solver for heterogeneous compute platforms , 2016, ACM Trans. Graph..

[21]  Chris Wojtan,et al.  Fundamental solutions for water wave animation , 2019, ACM Trans. Graph..

[22]  Reiji Tsuruno,et al.  A particle-based method for preserving fluid sheets , 2011, SCA '11.

[23]  Eftychios Sifakis,et al.  Power diagrams and sparse paged grids for high resolution adaptive liquids , 2017, ACM Trans. Graph..

[24]  Chenfanfu Jiang,et al.  A hybrid material‐point spheropolygon‐element method for solid and granular material interaction , 2019, International Journal for Numerical Methods in Engineering.

[25]  Dinesh K. Pai,et al.  ArtDefo: accurate real time deformable objects , 1999, SIGGRAPH.

[26]  Jun-Hai Yong,et al.  Simulation of bubbles , 2006, SCA '06.

[27]  R. Saye Interfacial gauge methods for incompressible fluid dynamics , 2016, Science Advances.

[28]  Sun Young Park,et al.  Magnetization dynamics for magnetic object interactions , 2018, ACM Trans. Graph..

[29]  Dongxiao Shi,et al.  Numerical Simulation of a Falling Ferrofluid Droplet in a Uniform Magnetic Field by the VOSET Method , 2014 .

[30]  Jing Liu,et al.  Numerical study of the formation process of ferrofluid droplets , 2011 .

[31]  W. Straßer,et al.  Magnets in motion , 2008, SIGGRAPH 2008.

[32]  Eitan Grinspun,et al.  Surface-only liquids , 2016, ACM Trans. Graph..

[33]  I. Rehberg,et al.  The surface topography of a magnetic fluid: a quantitative comparison between experiment and numerical simulation , 2007, Journal of Fluid Mechanics.

[34]  Jessica K. Hodgins,et al.  Dynamic simulation of splashing fluids , 1995, Proceedings Computer Animation'95.

[35]  Eftychios Sifakis,et al.  SPGrid: a sparse paged grid structure applied to adaptive smoke simulation , 2014, ACM Trans. Graph..

[36]  K Hirata,et al.  Numerical Analysis of Transitional Behavior of Ferrofluid Employing MPS Method and FEM , 2010, IEEE Transactions on Magnetics.

[37]  Huamin Wang,et al.  Enriching SPH simulation by approximate capillary waves , 2016, Symposium on Computer Animation.

[38]  Eitan Grinspun,et al.  A multi-scale model for coupling strands with shear-dependent liquid , 2019, ACM Trans. Graph..

[39]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[40]  Ronald Fedkiw,et al.  Codimensional surface tension flow on simplicial complexes , 2014, ACM Trans. Graph..

[41]  Chenfanfu Jiang,et al.  A material point method for viscoelastic fluids, foams and sponges , 2015, Symposium on Computer Animation.

[42]  Ronald Fedkiw,et al.  A symmetric positive definite formulation for monolithic fluid structure interaction , 2011, J. Comput. Phys..

[43]  N. Chentanez,et al.  Water surface wavelets , 2018, ACM Trans. Graph..

[44]  C. Oldenburg,et al.  Numerical Simulation of Ferrofluid Flow for Subsurface Environmental Engineering Applications , 2000 .

[45]  J. Maxwell VIII. A dynamical theory of the electromagnetic field , 1865, Philosophical Transactions of the Royal Society of London.

[46]  Eitan Grinspun,et al.  Hybrid grains , 2018, ACM Trans. Graph..

[47]  Samuel B. Williams,et al.  ASSOCIATION FOR COMPUTING MACHINERY , 2000 .

[48]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Eftychios Sifakis,et al.  Narrow-band topology optimization on a sparsely populated grid , 2018, ACM Trans. Graph..

[50]  S. Osher,et al.  Spatially adaptive techniques for level set methods and incompressible flow , 2006 .

[51]  J. Sethian,et al.  Multiscale Modeling of Membrane Rearrangement, Drainage, and Rupture in Evolving Foams , 2013, Science.

[52]  Eitan Grinspun,et al.  Supplemental : A Multi-Scale Model for Simulating Liquid-Hair Interactions , 2017 .

[53]  Guoqing Yang,et al.  Modeling and animation of fire , 2004, International Conference On Virtual Reality and Its Applications in Industry.

[54]  H. Minkowski,et al.  Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern , 1910 .

[55]  Robert Bridson,et al.  Animating sand as a fluid , 2005, ACM Trans. Graph..

[56]  James Clerk Maxwell,et al.  VIII. A dynamical theory of the electromagnetic field , 1865, Philosophical Transactions of the Royal Society of London.

[57]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[58]  J. Miranda,et al.  Wrinkling and folding patterns in a confined ferrofluid droplet with an elastic interface. , 2019, Physical review. E.

[59]  JensenHenrik Wann,et al.  Physically based modeling and animation of fire , 2002 .

[60]  Duc Quang Nguyen,et al.  Physically based modeling and animation of fire , 2002, ACM Trans. Graph..

[61]  Ronald Fedkiw,et al.  A new incompressibility discretization for a hybrid particle MAC grid representation with surface tension , 2015, J. Comput. Phys..

[62]  Kei Iwasaki,et al.  Visual Simulation of Magnetic Fluid Using a Procedural Approach for Spikes Shape , 2012, VISIGRAPP.

[63]  R. Fedkiw,et al.  Simulation and Animation of Fire and Other Natural Phenomena in the Visual Effects Industry , 2003 .

[64]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[65]  Xuanhe Zhao,et al.  Mechanics of hard-magnetic soft materials , 2019, Journal of the Mechanics and Physics of Solids.

[66]  Stefan Jeschke,et al.  Water wave packets , 2017, ACM Trans. Graph..

[67]  Ronald Fedkiw,et al.  Melting and burning solids into liquids and gases , 2006, IEEE Transactions on Visualization and Computer Graphics.

[68]  Wolfgang Straßer,et al.  Magnets in motion , 2008, SIGGRAPH Asia '08.

[69]  Robert Bridson,et al.  Variational stokes , 2017, ACM Trans. Graph..

[70]  Eitan Grinspun,et al.  A multi-scale model for simulating liquid-fabric interactions , 2018, ACM Trans. Graph..

[71]  Ronald Fedkiw,et al.  Wrinkled flames and cellular patterns , 2007, ACM Trans. Graph..

[72]  Über die im elektromagnetischen Felde auf ruhende Körper ausgeübten ponderomotorischen Kräfte , 1908 .

[73]  Ronald Fedkiw,et al.  Codimensional non-Newtonian fluids , 2015, ACM Trans. Graph..

[74]  Eitan Grinspun,et al.  Discrete viscous sheets , 2012, ACM Trans. Graph..

[75]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[76]  Robert Bridson,et al.  Accurate viscous free surfaces for buckling, coiling, and rotating liquids , 2008, SCA '08.

[77]  Eitan Grinspun,et al.  Multimaterial mesh-based surface tracking , 2014, ACM Trans. Graph..

[78]  Eftychios Sifakis,et al.  A parallel multigrid Poisson solver for fluids simulation on large grids , 2010, SCA '10.

[79]  M. Mayer,et al.  with boundary condition , 2022 .

[80]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .