Directionality in the history of life: diffusion from the left wall or repeated scaling of the right?

Abstract Issues of directionality in the history of life can be framed in terms of six major evolutionary steps, or megatrajectories (cf. Maynard Smith and Szathmáry 1995): (1) evolution from the origin of life to the last common ancestor of extant organisms, (2) the metabolic diversification of bacteria and archaea, (3) evolution of eukaryotic cells, (4) multicellularity, (5) the invasion of the land and (6) technological intelligence. Within each megatrajectory, overall diversification conforms to a pattern of increasing variance bounded by a right wall as well as one on the left. However, the expanding envelope of forms and physiologies also reflects—at least in part—directional evolution within clades. Each megatrajectory has introduced fundamentally new evolutionary entities that garner resources in new ways, resulting in an unambiguously directional pattern of increasing ecological complexity marked by expanding ecospace utilization. The sequential addition of megatrajectories adheres to logical rules of ecosystem function, providing a blueprint for evolution that may have been followed to varying degrees wherever life has arisen.

[1]  Robert L. Carroll,et al.  Vertebrate Paleontology and Evolution , 1988 .

[2]  P. Ahlberg Elginerpeton pancheni and the earliest tetrapod clade , 1995, Nature.

[3]  J. W. Valentine,et al.  Fossils, molecules and embryos: new perspectives on the Cambrian explosion. , 1999, Development.

[4]  Michael Foote,et al.  Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids , 1999, Paleobiology.

[5]  D. McShea MECHANISMS OF LARGE‐SCALE EVOLUTIONARY TRENDS , 1994, Evolution; international journal of organic evolution.

[6]  H. Mooney,et al.  Human Domination of Earth’s Ecosystems , 1997, Renewable Energy.

[7]  W. Saunders,et al.  Evolution of Complexity in Paleozoic Ammonoid Sutures. , 1999, Science.

[8]  J. Levinton,et al.  A comparative study of Silurian and recent deposit-feeding bivalve communities , 1975, Paleobiology.

[9]  K. Sterelny Bacteria at the High Table , 1999 .

[10]  N. Pace A molecular view of microbial diversity and the biosphere. , 1997, Science.

[11]  A Knoll Life's expanding realm. , 1994, Natural history.

[12]  J. M. Whatley,et al.  From extracellular to intracellular: the establishment of mitochondria and chloroplasts , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[13]  A. Knoll,et al.  Comparative Earth history and Late Permian mass extinction. , 1996, Science.

[14]  J. Gray,et al.  Early Silurian nonmarine animal remains and the nature of the early continental ecosystem , 1993 .

[15]  S. Gould Wonderful Life: The Burgess Shale and the Nature of History , 1989 .

[16]  J. Bonner The origins of multicellularity , 1998 .

[17]  G. Vermeij Inequality and the Directionality of History* , 1999, The American Naturalist.

[18]  G. Vermeij The Mesozoic marine revolution: evidence from snails, predators and grazers , 1977, Paleobiology.

[19]  Brian D. Farrell,et al.  "Inordinate Fondness" explained: why are there So many beetles? , 1998, Science.

[20]  J. Schopf,et al.  Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. , 1987, Science.

[21]  J. Clack,et al.  Rapid braincase evolution between Panderichthys and the earliest tetrapods , 1996, Nature.

[22]  M. Coates,et al.  Fish-like gills and breathing in the earliest known tetrapod , 1991, Nature.

[23]  D. Bottjer,et al.  Phanerozoic development of tiering in soft substrata suspension-feeding communities , 1986, Paleobiology.

[24]  M. Coates,et al.  Polydactyly in the earliest known tetrapod limbs , 1990, Nature.

[25]  G. Ledyard Stebbins,et al.  The Major Features of Evolution . George Gaylord Simpson. Columbia Univ. Press, New York, 1953. 434 pp. Illus. $7.50 , 1954, Science.

[26]  T. Kemp Synapsids and Evolution. (Book Reviews: Mammal-like Reptiles and the Origin of Mammals) , 1983 .

[27]  G. E. Hutchinson,et al.  The ecological theater and the evolutionary play , 1965 .

[28]  B. Jørgensen,et al.  Dense populations of a giant sulfur bacterium in Namibian shelf sediments. , 1999, Science.

[29]  Karl J. Niklas,et al.  The Evolution of Plant Body Plans—A Biomechanical Perspective , 2000 .

[30]  M. Foote,et al.  Morphological disparity in Ordovician-Devonian crinoids and the early saturation of morphological space , 1994, Paleobiology.

[31]  S. Stanley,et al.  AN EXPLANATION FOR COPE'S RULE , 1973, Evolution; international journal of organic evolution.

[32]  W. Martin,et al.  The hydrogen hypothesis for the first eukaryote , 1998, Nature.

[33]  A. Knoll,et al.  The early evolution of land plants , 1986 .

[34]  G. F. Joyce,et al.  The rise and fall of the RNA world. , 1991, The New biologist.

[35]  G. Ledyard Stebbins,et al.  The basis of progressive evolution , 1969 .

[36]  C. W. Thayer Sediment-Mediated Biological Disturbance and the Evolution of Marine Benthos , 1983 .

[37]  Michael J. Benton,et al.  The fossil record 2 , 1993 .

[38]  R. Bambach Chapter 6. Classes and Adaptive Variety: The Ecology of Diversification in Marine Faunas Through the Phanerozoic , 1986 .

[39]  Carlton E. Brett,et al.  The mid-Paleozoic precursor to the Mesozoic marine revolution , 1984, Paleobiology.

[40]  D. Erwin The Great Paleozoic Crisis , 1993 .

[41]  G. Vermeij Evolution and Escalation , 1987 .

[42]  T. Swain,et al.  Symbiosis in Cell Evolution: by L. Margulis. W. H. Freeman, San Francisco, 1981. xix + 419 pp. , 1983 .

[43]  L. Buss,et al.  The evolution of individuality , 1987 .

[44]  P. Crane,et al.  The origin and early diversification of land plants : a cladistic study , 1997 .

[45]  Eörs Szathmáry,et al.  The Major Transitions in Evolution , 1997 .

[46]  Christian de Duve,et al.  Vital Dust Life As A Cosmic Imperative , 1995, Nature Medicine.

[47]  J. Hayes,et al.  Terminal Proterozoic reorganization of biogeochemical cycles , 1995, Nature.

[48]  Purificación López-García,et al.  Symbiosis Between Methanogenic Archaea and δ-Proteobacteria as the Origin of Eukaryotes: The Syntrophic Hypothesis , 1998, Journal of Molecular Evolution.

[49]  L. Shapiro,et al.  Protein localization and cell fate in bacteria. , 1997, Science.

[50]  W. Maier Early Vertebrates, Oxford Monographs on Geology and Geophysics 33 , 2000 .

[51]  P. Ahlberg,et al.  The origin and early diversification of tetrapods , 1994, Nature.

[52]  Johan Bollen,et al.  The evolution of complexity , 1999 .

[53]  G. Retallack,et al.  Trace Fossil Evidence for Late Ordovician Animals on Land , 1987, Science.

[54]  P. Selden,et al.  Land animals in the silurian: arachnids and myriapods from shropshire, England. , 1990, Science.

[55]  Kim Sterelny,et al.  Sex and Death. An Introduction to Philosophy of Biology (M. Matthen) , 1999 .

[56]  D. McShea PERSPECTIVE METAZOAN COMPLEXITY AND EVOLUTION: IS THERE A TREND? , 1996, Evolution; international journal of organic evolution.

[57]  D. Bottjer,et al.  Tiering in Suspension-Feeding Communities on Soft Substrata Throughout the Phanerozoic , 1982, Science.

[58]  R. Bambach Ecospace Utilization and Guilds in Marine Communities through the Phanerozoic , 1983 .

[59]  J. Hailman Wonderful Life: The Burgess Shale and the Nature of History, Stephen Jay Gould. W. W. Norton, New York (1989), 347, Price $19.95 (U.S.A.), $27.95 (Canada) , 1991 .

[60]  R. Bambach Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem , 1993, Paleobiology.

[61]  R. Bambach Energetics in the global marinefauna: A connection between terrestrial diversification and change in the marine biosphere , 1999 .

[62]  A. Knoll,et al.  Character diversification and patterns of evolution in early vascular plants , 1984, Paleobiology.

[63]  J. Ascher,et al.  Flowers and Insect Evolution , 1999 .

[64]  R. Lenski,et al.  Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[65]  S. Carroll,et al.  Early animal evolution: emerging views from comparative biology and geology. , 1999, Science.

[66]  A. Knoll,et al.  Paleobiology of the Mesoproterozoic Billyakh Group, Anabar Uplift, Northern Siberia , 1995, Journal of Paleontology.

[67]  Simon Conway Morris,et al.  Wonderful Crucible@@@The Crucible of Creation: The Burgess Shale and the Rise of Animals. , 1998 .

[68]  J. Clack New material of the early tetrapod Acanthostega from the Upper Devonian of East Greenland , 1988 .

[69]  D H Campbell,et al.  THE ORIGIN OF LAND PLANTS. , 1930, Science.