Ultrafast Dynamics of Photoisomerization and Subsequent Unfolding of an Oligoazobenzene Foldamer.

Investigating and deciphering the dynamics of photoswitchable foldamers provides a detailed understanding of their photoinduced conformational transitions, resembling similar processes in photoresponsive biomacromolecules. We studied the ultrafast dynamics of the photoisomerization of azobenzene moieties embedded in a foldamer backbone and the resulting conformational helix-coil transition by time-resolved femtosecond/picosecond pump-probe spectroscopy in the visible and infrared region. During E → Z photoisomerization of the azobenzenes, the complexity of the photoinduced conformational transition of the pentameric foldamer 105 is reflected in distinct spectral characteristics and a 2-fold slower decay of the excited-state absorption bands compared to the monomer M (τ4,foldamer = 20 ps, τ4,monomer = 9 ps). Time-resolved IR experiments reveal the vibrational features of the monomer and the foldamer after photoexcitation, with an additional time constant for the foldamer (τ = 150 ps), indicating the initial steps of unfolding of the helical conformation, which are supported by density functional theory calculations. Our results record the overall sequence of photoinduced structural changes in the foldamer, starting from the initial ultrafast isomerization of the azobenzene unit(s) and ending with the complete unfolding on a later time scale. From our experiments, we could gain insight into the coupling of primary photoisomerization events ("cause") and secondary unfolding processes ("effect") in these oligoazobenzene foldamers.

[1]  Stefan Hecht,et al.  Remote control over folding by light. , 2016, Chemical communications.

[2]  U. Kusebauch,et al.  Temperature- and Photocontrolled Unfolding/Folding of a Triple-Helical Azobenzene-Stapled Collagen Peptide Monitored by Infrared Spectroscopy. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[3]  H. Schwalbe,et al.  Photoresponsive Formation of an Intermolecular Minimal G-Quadruplex Motif. , 2016, Angewandte Chemie.

[4]  S. Hecht,et al.  Visible-Light-Activated Molecular Switches. , 2015, Angewandte Chemie.

[5]  Paul S Weiss,et al.  Controlling Motion at the Nanoscale: Rise of the Molecular Machines. , 2015, ACS nano.

[6]  D. Trauner,et al.  Azobenzene-based inhibitors of human carbonic anhydrase II , 2015, Beilstein journal of organic chemistry.

[7]  Xiulin Zhu,et al.  Photoresponsive Amphiphilic Macrocycles Containing Main-Chain Azobenzene Polymers. , 2015, Macromolecular rapid communications.

[8]  K. Moth‐Poulsen,et al.  Designing photoswitches for molecular solar thermal energy storage , 2015 .

[9]  Mithun Biswas,et al.  Reversible photoswitching of RNA hybridization at room temperature with an azobenzene C-nucleoside. , 2015, Chemistry.

[10]  R. Fausto,et al.  Structural and spectroscopic characterization of E- and Z-isomers of azobenzene. , 2014, Physical chemistry chemical physics : PCCP.

[11]  S A Kovalenko,et al.  Photoisomerization dynamics and pathways of trans- and cis-azobenzene in solution from broadband femtosecond spectroscopies and calculations. , 2014, The journal of physical chemistry. B.

[12]  W. Richtering,et al.  Femtosecond spectroscopy reveals huge differences in the photoisomerisation dynamics between azobenzenes linked to polymers and azobenzenes in solution. , 2014, Physical chemistry chemical physics : PCCP.

[13]  S. Hecht,et al.  Remote-controlling chemical reactions by light: towards chemistry with high spatio-temporal resolution. , 2014, Chemical Society reviews.

[14]  S. Hecht,et al.  Control over unfolding pathways by localizing photoisomerization events within heterosequence oligoazobenzene foldamers. , 2013, Angewandte Chemie.

[15]  T. Risse,et al.  The role of statistics and microenvironment for the photoresponse in multi-switch architectures: The case of photoswitchable oligoazobenzene foldamers , 2013 .

[16]  John M. Beierle,et al.  Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. , 2013, Chemical reviews.

[17]  S. Hecht,et al.  Cooperative switching events in azobenzene foldamer denaturation. , 2012, Chemistry.

[18]  A. Heckel,et al.  Light-controlled tools. , 2012, Angewandte Chemie.

[19]  S. Burdette,et al.  Photoisomerization in different classes of azobenzene. , 2012, Chemical Society reviews.

[20]  S. Hecht,et al.  Toward optomechanics: maximizing the photodeformation of individual molecules. , 2011, Chemical communications.

[21]  G. Andrew Woolley,et al.  Azobenzene photoswitches for biomolecules. , 2011, Chemical Society reviews.

[22]  A. Zumbusch,et al.  Azobenzene: An Optical Switch for in vivo Experiments , 2011, Chembiochem : a European journal of chemical biology.

[23]  Heino Finkelmann,et al.  Azophenol-based liquid-crystalline elastomers for light-driven actuators. , 2011, Organic letters.

[24]  S. Hecht,et al.  Reversible and quantitative denaturation of amphiphilic oligo(azobenzene) foldamers. , 2011, Angewandte Chemie.

[25]  V. Tropepe,et al.  Fluorescence imaging of azobenzene photoswitching in vivo. , 2011, Angewandte Chemie.

[26]  H. Asanuma,et al.  Construction of photoresponsive RNA for photoswitching RNA hybridization. , 2010, Organic & biomolecular chemistry.

[27]  H. Asanuma,et al.  Photoregulation of DNA transcription by using photoresponsive T7 promoters and clarification of its mechanism , 2010, The FEBS journal.

[28]  E. Yashima,et al.  Helical polymers: synthesis, structures, and functions. , 2009, Chemical reviews.

[29]  S. Gellman,et al.  Stereospecific synthesis of conformationally constrained gamma-amino acids: new foldamer building blocks that support helical secondary structure. , 2009, Journal of the American Chemical Society.

[30]  Tomiki Ikeda,et al.  Smart Light-Responsive Materials , 2009 .

[31]  W Seth Horne,et al.  Foldamers with heterogeneous backbones. , 2008, Accounts of chemical research.

[32]  A. Kornyshev,et al.  Structure and interactions of biological helices , 2007 .

[33]  U. Kusebauch,et al.  Photocontrolled folding and unfolding of a collagen triple helix. , 2006, Angewandte Chemie.

[34]  S. Hecht,et al.  Towards photocontrol over the helix-coil transition in foldamers: synthesis and photoresponsive behavior of azobenzene-core amphiphilic oligo(meta-phenylene ethynylene)s. , 2006, Chemistry.

[35]  C. Renner,et al.  Azobenzene as Conformational Switch in Model Peptides , 2006, Chembiochem : a European journal of chemical biology.

[36]  S. Hecht,et al.  Prototype of a photoswitchable foldamer. , 2006, Angewandte Chemie.

[37]  J. Leger,et al.  Molecular apple peels. , 2005, Angewandte Chemie.

[38]  Jun-Li Hou,et al.  Hydrogen bonded oligohydrazide foldamers and their recognition for saccharides. , 2004, Journal of the American Chemical Society.

[39]  M. Braun,et al.  Excited-State Dynamics of trans- and cis-Azobenzene after UV Excitation in the ππ* Band , 2004 .

[40]  Hajime Abe,et al.  Saccharide-dependent induction of chiral helicity in achiral synthetic hydrogen-bonding oligomers. , 2004, Journal of the American Chemical Society.

[41]  S. Gellman,et al.  Two Helical Conformations from a Single Foldamer Backbone: “Split Personality” in Short α/β‐Peptides , 2004 .

[42]  Luis Moroder,et al.  Picosecond conformational transition and equilibration of a cyclic peptide , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  W. Zinth,et al.  Fluorescence spectra of trans- and cis-azobenzene – emission from the Franck–Condon state , 2003 .

[44]  F. Diederich,et al.  Interactions with aromatic rings in chemical and biological recognition. , 2003, Angewandte Chemie.

[45]  Matthew T. Stone,et al.  Helical pitch of m-phenylene ethynylene foldamers by double spin labeling. , 2002, Journal of the American Chemical Society.

[46]  Paul Tavan,et al.  Ultrafast spectroscopy reveals subnanosecond peptide conformational dynamics and validates molecular dynamics simulation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Matthew J. Mio,et al.  A field guide to foldamers. , 2001, Chemical reviews.

[48]  E. W. Meijer,et al.  Self-assembly of folded m-phenylene ethynylene oligomers into helical columns. , 2001, Journal of the American Chemical Society.

[49]  Matthew J. Mio,et al.  Chain length-dependent affinity of helical foldamers for a rodlike guest. , 2001, Journal of the American Chemical Society.

[50]  P. Hamm,et al.  Noise suppression in femtosecond mid-infrared light sources. , 2000, Optics letters.

[51]  Jeffrey S. Moore,et al.  Solvophobically Driven π-Stacking of Phenylene Ethynylene Macrocycles and Oligomers , 2000 .

[52]  Martin Gruebele,et al.  Transition from Exponential to Nonexponential Kinetics during Formation of a Nonbiological Helix , 2000 .

[53]  Jeffrey S. Moore,et al.  Foldamer-Based Molecular Recognition , 2000 .

[54]  Jeffery G. Saven,et al.  Cooperative Conformational Transitions in Phenylene Ethynylene Oligomers: Chain-Length Dependence , 1999 .

[55]  J S Moore,et al.  Solvophobically driven folding of nonbiological oligomers. , 1997, Science.

[56]  Wolfgang Zinth,et al.  Vibrational cooling after ultrafast photoisomerization of azobenzene measured by femtosecond infrared spectroscopy , 1997 .

[57]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[58]  N. Handy,et al.  Higher analytic derivatives. IV. Anharmonic effects in the benzene spectrum , 1992 .

[59]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[60]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[61]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[62]  J. Toulmé,et al.  Deciphering aromatic oligoamide foldamer-DNA interactions. , 2012, Angewandte Chemie.

[63]  Tomiki Ikeda,et al.  Smart light-responsive materials : azobenzene-containing polymers and liquid crystals , 2009 .

[64]  Jeffrey S. Moore,et al.  The chain-length dependence test. , 2006, Accounts of chemical research.