Plasmid vectors for the analysis of regulatory sequences in yeast.

[1]  R. Schekman,et al.  An MF alpha 1-SUC2 (alpha-factor-invertase) gene fusion for study of protein localization and gene expression in yeast. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[2]  J. Broach,et al.  Properties of REP3: a cis-acting locus required for stable propagation of the Saccharomyces cerevisiae plasmid 2 microns circle , 1985, Molecular and cellular biology.

[3]  L. Siminovitch,et al.  Expression of Bacterial β-Galactosidase in Animal Cells , 1982 .

[4]  K. Murata,et al.  Transformation of intact yeast cells treated with alkali cations , 1983 .

[5]  J. Coffin,et al.  Bacterial beta-galactosidase as a marker of Rous sarcoma virus gene expression and replication , 1985, Molecular and cellular biology.

[6]  J. Szostak A rapid procedure for the construction of linear yeast plasmids. , 1983, Methods in enzymology.

[7]  J. Beggs Transformation of yeast by a replicating hybrid plasmid , 1978, Nature.

[8]  R. W. Davis,et al.  High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[9]  R. W. Davis,et al.  Functional genetic expression of eukaryotic DNA in Escherichia coli. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[10]  F. Jacob,et al.  Délétions fusionnant ľopéron lactose et un opéron purine chez Escherichia coli , 1965 .

[11]  J. Shine,et al.  Origin of replication of pBR345 plasmid DNA. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[12]  L. Clarke,et al.  Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs , 1982, Cell.

[13]  G. Fink,et al.  Transformation of yeast. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[14]  M. Kozak Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. , 1981, Nucleic acids research.

[15]  B. Howard,et al.  Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells , 1982, Molecular and cellular biology.

[16]  R. W. Davis,et al.  Isolation and characterisation of a yeast chromosomal replicator , 1979, Nature.

[17]  K. Otto,et al.  Sequence of the lacZ gene of Escherichia coli. , 1983, The EMBO journal.

[18]  S. Kearsey Structural requirements for the function of a yeast chromosomal replicator , 1984, Cell.

[19]  B. Howard,et al.  Efficient expression of Escherichia coli galactokinase gene in mammalian cells. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[20]  W. V. Shaw [57] Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria , 1975 .

[21]  D. Moore,et al.  CAT vectors for analysis of eukaryotic promoters and enhancers. , 1986, Gene.

[22]  D. Hawthorne,et al.  ENZYMATIC EXPRESSION AND GENETIC LINKAGE OF GENES CONTROLLING GALACTOSE UTILIZATION IN SACCHAROMYCES. , 1964, Genetics.

[23]  J. Cohen,et al.  Functional expression in yeast of the Escherichia coli plasmid gene coding for chloramphenicol acetyltransferase. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[24]  D. Vapnek,et al.  Nucleotide sequence analysis of the chloramphenicol resistance transposon Tn9 , 1979, Nature.

[25]  J. Broach [21] Construction of high copy yeast vectors using 2-μm circle sequences , 1983 .

[26]  J. Broach,et al.  Recombination within the yeast plasmid 2μ circle is site-specific , 1982, Cell.

[27]  J. Carbon,et al.  Functional expression of cloned yeast DNA in Escherichia coli. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J. Lis,et al.  New heat shock puffs and β=galactosidase activity resulting from transformation of Drosophila with an hsp70-lacZ hybrid gene , 1983, Cell.

[29]  D. Schümperli,et al.  The expression in yeast of the Escherichia coli galK gene on CYC1::galK fusion plasmids. , 1983, Gene.

[30]  J. Rine,et al.  Regulated expression of endonuclease EcoRI in Saccharomyces cerevisiae: nuclear entry and biological consequences. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[31]  W. L. Fangman,et al.  Replication of each copy of the yeast 2 micron DNA plasmid occurs during the S phase , 1979, Cell.

[32]  J. Monod,et al.  Characterization by in vitro complementation of a peptide corresponding to an operator-proximal segment of the beta-galactosidase structural gene of Escherichia coli. , 1967, Journal of molecular biology.

[33]  B. Müller-Hill,et al.  Lac repressor can be fused to β-galactosidase , 1974, Nature.

[34]  T. Close,et al.  Construction and characterization of the chloramphenicol-resistance gene cartridge: a new approach to the transcriptional mapping of extrachromosomal elements. , 1982, Gene.

[35]  J. Broach,et al.  The yeast plasmid 2μ circle encodes components required for its high copy propagation , 1983, Cell.

[36]  B. S. Hartley,et al.  Primary structure of a chloramphenicol acetyltransferase specified by R plasmids , 1979, Nature.

[37]  L. Guarente,et al.  Fusion of Escherichia coli lacZ to the cytochrome c gene of Saccharomyces cerevisiae. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[38]  S. Falkow,et al.  Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. , 1977, Gene.

[39]  James R. Broach,et al.  Replication and recombination functions associated with the yeast plasmid, 2μ circle , 1980, Cell.

[40]  Y. Kikuchi Yeast plasmid requires a cis-acting locus and two plasmid proteins for its stable maintenance , 1983, Cell.

[41]  D. Botstein,et al.  Yeast genes fused to beta-galactosidase in Escherichia coli can be expressed normally in yeast. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[42]  C. Lowry,et al.  Oxygen regulation of anaerobic and aerobic genes mediated by a common factor in yeast. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[43]  D. Botstein,et al.  Evidence for transcriptional regulation of orotidine-5'-phosphate decarboxylase in yeast by hybridization of mRNA to the yeast structural gene cloned in Escherichia coli. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[44]  J W Szostak,et al.  Genetic applications of yeast transformation with linear and gapped plasmids. , 1983, Methods in enzymology.

[45]  D. Kupfer,et al.  Control of Saccharomyces cerevisiae 2microN DNA replication by cell division cycle genes that control nuclear DNA replication. , 1977, Journal of molecular biology.

[46]  John Carbon,et al.  Isolation of a yeast centromere and construction of functional small circular chromosomes , 1980, Nature.

[47]  R. Rodriguez,et al.  Nucleotide sequence of the 3' terminal region of the LEU2 gene from Saccharomyces cerevisiae. , 1984, Gene.