Geochemistry of Eocene felsic volcanic rocks from the Mesa Virgen‐Calerilla, Zacatecas, Mexico: Implications for the magma source and tectonic setting

The Mesa Virgen Calerilla (MVC) is located in the state of Zacatecas, Mexico. The most intense volcanism, which occurred during the Eocene, formed extensive ignimbrite deposits exposed in some parts as lava spills of rhyolitic (felsic) composition. This felsic volcanism may represent much of the MVC. This study describes whole‐rock geochemistry and mineralogy data from felsic volcanic rocks in the MVC to address their petrogenesis and tectonic setting. The MVC covers a compositional spectrum ranging from trachyte, dacite, to high‐silica rhyolite. The petrography and mineral assemblages indicate that the felsic rocks are composed of K‐feldspar (sanidine), quartz, plagioclase, and biotite. The felsic volcanic rocks have a composition of 64.08–78.17 wt% (SiO2)adj, 0.14–0.69 wt% (TiO2)adj, and 0.11–0.62 wt% (MgO)adj with 12–54 Mg number [Mg# = 100 × (Mg2+/[Mg2+ + Fe2+])]. These felsic volcanic rocks showed enrichment in light rare earth elements (LREE; [La/Sm]N = 3.80–7.19), and are depleted in heavy rare earth elements [HREE; (Tb/Yb)N ratios 0.35–1.84], along with negative Ba, Nb, Sr, P, Eu, and Ti anomalies. The geochemical characteristics and petrogenetic modelling indicate that felsic volcanic rocks are derived from partial melting process of an upper‐middle continental crust. The tectono‐magmatic model and multidimensional tectonic discrimination diagram indicate that an extensional‐related setting prevails for the MVC.

[1]  S. K. Verma,et al.  Geochemistry and petrogenesis of oligocene felsic volcanic rocks from the Pinos Volcanic Complex, Mesa Central, Mexico , 2020 .

[2]  S. K. Verma,et al.  40Ar/39Ar geochronology and petrogenesis of the Sierra de San Miguelito Volcanic Complex, Mesa Central, Mexico , 2020 .

[3]  S. K. Verma,et al.  Geochemistry of Mesozoic volcanic rocks from the Fresnillo area (Chilitos Formation), Zacatecas, Mexico: Implications for the magma source and tectonic setting , 2019 .

[4]  S. K. Verma,et al.  Petrogenetic and tectonic implications of Oligocene−Miocene volcanic rocks from the Sierra de San Miguelito complex, central Mexico , 2019, Journal of South American Earth Sciences.

[5]  P. Dávila-Harris,et al.  Almandine garnet-bearing rhyolites associated to bimodal volcanism in the Mesa Central of Mexico: Geochemical, petrological and geochronological evolution , 2019, Journal of South American Earth Sciences.

[6]  S. K. Verma,et al.  Statistically Coherent Calibration of X-Ray Fluorescence Spectrometry for Major Elements in Rocks and Minerals , 2018, Journal of Spectroscopy.

[7]  J. Richards,et al.  Multiple mineralization events in the Zacatecas Ag-Pb-Zn-Cu-Au district, and their relationship to the tectonomagmatic evolution of the Mesa Central, Mexico , 2018, Ore Geology Reviews.

[8]  S. K. Verma,et al.  Petrogenetic and tectonic implications of major and trace element and radiogenic isotope geochemistry of Pliocene to Holocene rocks from the Tacaná Volcanic Complex and Chiapanecan Volcanic Belt, southern Mexico , 2018, Lithos.

[9]  S. Verma Present state of knowledge and new geochemical constraints on the central part of the Mexican Volcanic Belt and comparison with the Central American Volcanic Arc in terms of near and far trench magmas , 2015 .

[10]  José Ramón Torres-Hernández,et al.  Geocronología y características geoquímicas de un conjunto de domos riolíticos terciarios en el Campo Volcánico de San Luis Potosí, México , 2014 .

[11]  H. Bellon,et al.  Eocene to Quaternary mafic-intermediate volcanism in San Luis Potosí, central Mexico: The transition from Farallon plate subduction to intra-plate continental magmatism , 2014 .

[12]  S. Verma,et al.  Computer Programs for the Classification and Nomenclature of Igneous Rocks , 2013 .

[13]  S. K. Verma,et al.  Fifteen new discriminant-function-based multi-dimensional robust diagrams for acid rocks and their application to Precambrian rocks , 2013 .

[14]  Rodolfo Rodríguez-Ríos,et al.  Estructura y geoquímica de un grupo de domos dacíticos del norponiente del campo volcánico de San Luis Potosí, México , 2013 .

[15]  S. Verma Statistical Evaluation of Bivariate, Ternary and Discriminant Function Tectonomagmatic Discrimination Diagrams , 2010, Turkish Journal of Earth Sciences.

[16]  G. Aguirre-Díaz,et al.  Fissure ignimbrites: Fissure-source origin for voluminous ignimbrites of the Sierra Madre Occidental and its relationship with Basin and Range faulting , 2003 .

[17]  A. F. Nieto-Samaniego,et al.  Origin of rhyolitic lavas in the Mesa central, Mexico, by crustal melting related to extension , 2002 .

[18]  J. Leroy,et al.  The topaz-bearing rhyolites from the San Luis Potosi area (Mexico): characteristics of the lava and growth conditions of topaz , 2002 .

[19]  L. Ferrari,et al.  Variation of Cenozoic extension and volcanism across the southern Sierra Madre Occidental volcanic province, Mexico , 1999 .

[20]  W. McDonough,et al.  The composition of the Earth , 1995 .

[21]  A. Makishima,et al.  Ce isotope ratios of N-type MORB , 1994 .

[22]  W. Heinrich,et al.  Composition and SmNd isotopic data of the lower crust beneath San Luis Potosí, central Mexico: Evidence from a granulite-facies xenolith suite , 1994 .

[23]  M. Thirlwall,et al.  High Field Strength Element Anomalies in Arc Lavas: Source or Process? , 1994 .

[24]  E. Middlemost Iron oxidation ratios, norms and the classification of volcanic rocks , 1989 .

[25]  K. F. Clark,et al.  The Zacatecas mining district; a Tertiary caldera complex associated with precious and base metal mineralization , 1988 .

[26]  R. Snyder,et al.  RIR - Measurement and Use in Quantitative XRD , 1988, Powder Diffraction.

[27]  A. J. Macdonald,et al.  Vein, manto, and chimney mineralization at the Fresnillo sliver–lead–zinc mine, Mexico , 1986 .

[28]  R. W. Le Maitre,et al.  A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram , 1986 .

[29]  E. Christiansen,et al.  The Geology and Geochemistry of Cenozoic Topaz Rhyolites from the Western United States , 1986 .

[30]  S. Verma Sr and Nd isotopic evidence for petrogenesis of mid-tertiary felsic volcanism in the mineral district of Zacatecas, Zac. (Sierra Madre Occidental), Mexico , 1984 .

[31]  J. Minster,et al.  Quantitative models of trace element behavior in magmatic processes , 1978 .

[32]  A. Aguillón-Robles,et al.  Geochronology and geochemical characteristics of a group of Tertiary rhyolitic domes in the San Luis Potosí Volcanic Field, Mexico , 2014 .

[33]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[34]  A. Camprubí,et al.  Mesa Central of México: Stratigraphy, structure, and Cenozoic tectonic evolution , 2007 .

[35]  Á. Samaniego,et al.  Nuevas edades isotópicas de la cubierta volcánica cenozoica de la parte meridional de la Mesa Central, México , 1996 .

[36]  S. E. D. L. Vega Crecimiento urbano de la ciudad de Zacatecas y sus asentamientos humanos en zonas mineralizadas polimetálicas , 1994 .

[37]  W. Ranson,et al.  Petrology of the Metamorphic Rocks of Zacatecas, Zac., México , 1982 .

[38]  M. A. Gamper Estratigrafía y microfacies cretácicas del Anticlinorio de Huizachal-Peregrina, (Sierra Madre Oriental) , 1977 .

[39]  I. Gibson,et al.  Elemental mobility during zeolite facies metamorphism of the Tertiary basalts of eastern Iceland , 1976 .

[40]  R. McGehee Las rocas metamórficas del Arroyo de la Pimienta, Zacatecas, Zac. , 1976 .

[41]  J. Pearce Basalt geochemistry used to investigate past tectonic environments on Cyprus , 1975 .

[42]  M. Amador Las Capas Cárnicas de Zacatecas , 2022 .

[43]  Carlos Burckhardt Sobre el Descubrimiento del Triásico Marino en Zacatecas , 1906 .