Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells.

[1]  Annaïg Lan,et al.  The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. , 2009, Immunity.

[2]  D. P. Strachan,et al.  Hay fever, hygiene, and household size. , 1989, BMJ.

[3]  D. Hwang,et al.  Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. , 2008, Immunity.

[4]  G. Adler,et al.  Commensal Gut Flora Drives the Expansion of Proinflammatory CD4 T Cells in the Colonic Lamina Propria under Normal and Inflammatory Conditions1 , 2008, The Journal of Immunology.

[5]  J. Carulli,et al.  Inflammatory arthritis can be reined in by CpG-induced DC–NK cell cross talk , 2007, The Journal of experimental medicine.

[6]  W. Walker,et al.  Neonatal microbial flora and disease outcome. , 2008, Nestle Nutrition workshop series. Paediatric programme.

[7]  C. Deming,et al.  Topographical and Temporal Diversity of the Human Skin Microbiome , 2009, Science.

[8]  A. Imaoka,et al.  Segmented Filamentous Bacteria Are Indigenous Intestinal Bacteria That Activate Intraepithelial Lymphocytes and Induce MHC Class II Molecules and Fucosyl Asialo GM1 Glycolipids on the Small Intestinal Epithelial Cells in the Ex‐Germ‐Free Mouse , 1995, Microbiology and immunology.

[9]  C. Benoist,et al.  Danger-free autoimmune disease in Aire-deficient mice , 2007, Proceedings of the National Academy of Sciences.

[10]  Walker Wa,et al.  Neonatal microbial flora and disease outcome. , 2008, Nestle Nutrition workshop series. Paediatric programme.

[11]  D. Hwang,et al.  Generation of T Follicular Helper Cells Is Mediated by Interleukin-21 but Independent of T Helper 1, 2, or 17 Cell Lineages (DOI: 10.1016/j.immuni.2008.05.009) , 2008 .

[12]  C. D. Garland,et al.  Segmented filamentous bacteria in the rodent small intestine: Their colonization of growing animals and possible role in host resistance toSalmonella , 1982, Microbial Ecology.

[13]  O. Benada,et al.  Segmented filamentous bacteria in a defined bacterial cocktail induce intestinal inflammation in SCID mice reconstituted with CD45RBhigh CD4+ T cells , 2007, Inflammatory bowel diseases.

[14]  A. Beynen,et al.  Intestinal, segmented, filamentous bacteria in a wide range of vertebrate species , 1993, Laboratory animals.

[15]  S. Akira,et al.  A role for fungal β-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice , 2005, The Journal of experimental medicine.

[16]  W. Eling,et al.  Apathogenic, intestinal, segmented, filamentous bacteria stimulate the mucosal immune system of mice , 1993, Infection and immunity.

[17]  C. Benoist,et al.  IL-17-producing T cells can augment autoantibody-induced arthritis , 2009, Proceedings of the National Academy of Sciences.

[18]  F. Bäckhed,et al.  Host-Bacterial Mutualism in the Human Intestine , 2005, Science.

[19]  R. Medzhitov,et al.  Innate immune recognition of the indigenous microbial flora , 2008, Mucosal Immunology.

[20]  S. Mazmanian,et al.  A microbial symbiosis factor prevents intestinal inflammatory disease , 2008, Nature.

[21]  M. Stone,et al.  Should tetracycline treatment be used more extensively for rheumatoid arthritis? Metaanalysis demonstrates clinical benefit with reduction in disease activity. , 2003, The Journal of rheumatology.

[22]  R. Ley,et al.  Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine , 2006, Cell.

[23]  G. Weinstock,et al.  Enteric defensins are essential regulators of intestinal microbial ecology , 2009, Nature Immunology.

[24]  R. Knight,et al.  Evolution of Mammals and Their Gut Microbes , 2008, Science.

[25]  S. Sainsbury,et al.  T cell-mediated autoimmune disease due to low-affinity crossreactivity to common microbial peptides. , 2009, Immunity.

[26]  A. Shapiro,et al.  Inhibition of Th17 Cells Regulates Autoimmune Diabetes in NOD Mice , 2009, Diabetes.

[27]  C. Edwards Commensal gut bacteria and the etiopathogenesis of rheumatoid arthritis. , 2008, The Journal of rheumatology.

[28]  L. Hooper,et al.  Immune responses to the microbiota at the intestinal mucosal surface. , 2009, Immunity.

[29]  E. Butcher,et al.  Environmental cues, dendritic cells and the programming of tissue-selective lymphocyte trafficking , 2008, Nature Immunology.

[30]  V. Kouskoff,et al.  Organ-Specific Disease Provoked by Systemic Autoimmunity , 1996, Cell.

[31]  K. Rajewsky,et al.  From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. , 1999, Immunity.

[32]  Robert W. Williams,et al.  Interleukin 17–producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice , 2008, Nature Immunology.

[33]  Dan R. Littman,et al.  Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria , 2009, Cell.

[34]  W. Seaman Faculty Opinions recommendation of A role for fungal {beta}-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. , 2005 .

[35]  A. Macpherson,et al.  Interactions between commensal intestinal bacteria and the immune system , 2004, Nature Reviews Immunology.

[36]  Ruslan Medzhitov,et al.  Recognition of Commensal Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis , 2004, Cell.

[37]  Masahiro Yamamoto,et al.  ATP drives lamina propria TH17 cell differentiation , 2008, Nature.

[38]  R. Weissleder,et al.  Particularities of the vasculature can promote the organ specificity of autoimmune attack , 2006, Nature Immunology.

[39]  A. Bradley,et al.  Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. , 1993, Science.

[40]  R. Knight,et al.  Worlds within worlds: evolution of the vertebrate gut microbiota , 2008, Nature Reviews Microbiology.

[41]  J. Shellito,et al.  Requirement of Interleukin 17 Receptor Signaling for Lung Cxc Chemokine and Granulocyte Colony-Stimulating Factor Expression, Neutrophil Recruitment, and Host Defense , 2001, The Journal of experimental medicine.

[42]  H. L. Klaasen,et al.  Intestinal, segmented, filamentous bacteria. , 1992, FEMS microbiology reviews.

[43]  S. Mazmanian,et al.  An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System , 2005, Cell.

[44]  D. Bending,et al.  Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. , 2009, The Journal of clinical investigation.

[45]  C. Karp,et al.  The germless theory of allergic disease: revisiting the hygiene hypothesis , 2001, Nature Reviews Immunology.

[46]  R. Förster,et al.  Mesenteric Lymph Nodes Confine Dendritic Cell-Mediated Dissemination of Salmonella enterica Serovar Typhimurium and Limit Systemic Disease in Mice , 2009, Infection and Immunity.

[47]  D. Littman,et al.  The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. , 2006, Cell.

[48]  C. Benoist,et al.  Arthritogenic Monoclonal Antibodies from K/BxN Mice , 2002, The Journal of experimental medicine.

[49]  N. Bos,et al.  Segmented Filamentous Bacteria Are Potent Stimuli of a Physiologically Normal State of the Murine Gut Mucosal Immune System , 1999, Infection and Immunity.

[50]  A. Signore,et al.  NOD mouse colonies around the world--recent facts and figures. , 1993, Immunology today.

[51]  M. Collins,et al.  Comparison of 16S rRNA sequences of segmented filamentous bacteria isolated from mice, rats, and chickens and proposal of "Candidatus Arthromitus". , 1995, International journal of systematic bacteriology.

[52]  Yi-hong Wang,et al.  Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells , 2009, European journal of immunology.

[53]  R. Aminov,et al.  Importance of microbial colonization of the gut in early life to the development of immunity. , 2007, Mutation research.

[54]  P. Chambon,et al.  Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi Cells. , 2008, Immunity.

[55]  Mark S. Anderson,et al.  Effector Mechanisms of the Autoimmune Syndrome in the Murine Model of Autoimmune Polyglandular Syndrome Type 11 , 2008, The Journal of Immunology.

[56]  A. Macpherson,et al.  Induction of Protective IgA by Intestinal Dendritic Cells Carrying Commensal Bacteria , 2004, Science.

[57]  P. Toivanen,et al.  Fecal microbiota in early rheumatoid arthritis. , 2008, The Journal of rheumatology.

[58]  C. Benoist,et al.  Rituximab specifically depletes short-lived autoreactive plasma cells in a mouse model of inflammatory arthritis , 2010, Proceedings of the National Academy of Sciences.

[59]  L. Klareskog,et al.  Role of the Bowel Flora for Development of Immunity to hsp 65 and Arthritis in Three Experimental Models , 1994, Scandinavian journal of immunology.

[60]  S. Mazmanian,et al.  The love–hate relationship between bacterial polysaccharides and the host immune system , 2006, Nature Reviews Immunology.

[61]  R Balfour Sartor,et al.  Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. , 2008, Cell host & microbe.

[62]  L. Hooper,et al.  Gut commensal bacteria direct a protective immune response against Toxoplasma gondii. , 2009, Cell host & microbe.

[63]  C. Benoist,et al.  Arthritis provoked by linked T and B cell recognition of a glycolytic enzyme. , 1999, Science.

[64]  C. Benoist,et al.  How antibodies to a ubiquitous cytoplasmic enzyme may provoke joint-specific autoimmune disease , 2002, Nature Immunology.

[65]  A. Chervonsky,et al.  Influence of microbial environment on autoimmunity , 2010, Nature Immunology.