Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{D}_d$$\end{document} be the class of d-degenerate graphs and let L be a list assignment for a graph G. A colouring of G such that every vertex receives a colour from its list and the subgraph induced by vertices coloured with one color is a d-degenerate graph is called the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(L,\mathcal{D}_d)$$\end{document}-colouring of G. For a k-uniform list assignment L and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in \mathbb {N}_0$$\end{document}, a graph G is equitably \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(L,\mathcal{D}_d)$$\end{document}-colorable if there is an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(L,\mathcal{D}_d)$$\end{document}-colouring of G such that the size of any colour class does not exceed \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\lceil |V(G)|/k\right\rceil $$\end{document}. An equitable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(L,\mathcal{D}_d)$$\end{document}-colouring is a generalization of an equitable list coloring, introduced by Kostochka et al., and an equitable list arboricity presented by Zhang. Such a model can be useful in the network decomposition where some structural properties on subnets are imposed. In this paper we give a polynomial-time algorithm that for a given (k, d)-partition of G with a t-uniform list assignment L and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\ge k$$\end{document}, returns its equitable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(L,\mathcal {D}_{d-1})$$\end{document}-colouring. In addition, we show that 3-dimensional grids are equitably \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(L,\mathcal {D}_1)$$\end{document}-colorable for any t-uniform list assignment L where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\ge 3$$\end{document}.
[1]
Michael J. Pelsmajer,et al.
Equitable list-coloring for graphs of maximum degree 3
,
2004
.
[2]
Xin Zhang.
Equitable list point arboricity of graphs
,
2014,
ArXiv.
[3]
Tao Li,et al.
Analyzing lattice networks through substructures
,
2018,
Appl. Math. Comput..
[4]
Michael J. Pelsmajer.
Equitable list-coloring for graphs of maximum degree 3
,
2004,
J. Graph Theory.
[5]
Frank Harary,et al.
Graph Theory
,
2016
.
[6]
Jeffrey A. Mudrock,et al.
A Note on the Equitable Choosability of Complete Bipartite Graphs
,
2018,
Discuss. Math. Graph Theory.
[7]
Alexandr V. Kostochka,et al.
A list analogue of equitable coloring
,
2003
.
[8]
Alexandr V. Kostochka,et al.
A list analogue of equitable coloring
,
2003,
J. Graph Theory.
[9]
Ewa Drgas-Burchardt,et al.
Equitable List Vertex Colourability and Arboricity of Grids
,
2018
.
[10]
Boming Yu,et al.
Optimal structure of damaged tree-like branching networks for the equivalent thermal conductivity
,
2016
.
[11]
Feodor F. Dragan,et al.
Metric tree‐like structures in real‐world networks: an empirical study
,
2016,
Networks.
[12]
Yan Li,et al.
Equitable vertex arboricity of $d$-degenerate graphs
,
2019,
ArXiv.