Numerical resolution of the inverse source problem for EEG using the quasi-reversibility method

The paper concerns the numerical resolution of the inverse source problem for electroencephalography. We propose an approach which is able to take into account some heterogeneity properties (namely a varying electrical conductivity) of the head tissues, in particular of the skull layer. It combines two consecutive steps: (i) a data completion procedure from the scalp to the cortex using the quasi-reversibility method, (ii) a source estimation method from these cortical transmitted data within the brain (modeled as sphere), developed in the software tool FindSources3D. Numerical simulations in the case of the multi-layered spherical head model illustrate both the promising and limiting features of the approach.

[1]  F. Wallois,et al.  Back to basics: the neuronal substrates and mechanisms that underlie the electroencephalogram in premature neonates , 2020, Neurophysiologie Clinique.

[2]  E. Bourel-ponchel,et al.  Technical recommendations and interpretation guidelines for electroencephalography for premature and full-term newborns , 2020, Neurophysiologie Clinique.

[3]  Michalis E. Zervakis,et al.  Inter-Subject Variability of Skull Conductivity and Thickness in Calibrated Realistic Head Models , 2020, NeuroImage.

[4]  S. Moshé,et al.  The role of EEG in patients with suspected epilepsy. , 2020, Epileptic disorders : international epilepsy journal with videotape.

[5]  P. Vannasing,et al.  Functional Brain Connectivity of Language Functions in Children Revealed by EEG and MEG: A Systematic Review , 2020, Frontiers in Human Neuroscience.

[6]  Lucas Chesnel,et al.  On quasi-reversibility solutions to the Cauchy problem for the Laplace equation: regularity and error estimates , 2019, ESAIM: Mathematical Modelling and Numerical Analysis.

[7]  Jukka Sarvas,et al.  Brain Signals: Physics and Mathematics of MEG and EEG , 2019 .

[8]  M. Darbas,et al.  An inverse dipole source problem in inhomogeneous media: Application to the EEG source localization in neonates , 2019, Journal of Inverse and Ill-posed Problems.

[9]  Laurent Bourgeois,et al.  A mixed formulation of the Tikhonov regularization and its application to inverse PDE problems , 2018 .

[10]  Stephanie Lohrengel,et al.  EEG in neonates: Forward modeling and sensitivity analysis with respect to variations of the conductivity. , 2018, Mathematical biosciences and engineering : MBE.

[11]  Matti Stenroos,et al.  Truncated RAP-MUSIC (TRAP-MUSIC) for MEG and EEG source localization , 2018, NeuroImage.

[12]  Christos Papageorgakis,et al.  Patient specific conductivity models: characterization of the skull bones. (Modèles de conductivité patient-spécifiques : caractérisation de l'os du crâne) , 2017 .

[13]  M. Diallo Problème inverse de sources en Electro-Encéphalo-Graphie chez le nouveau-né , 2017 .

[14]  Jean-Yves Tourneret,et al.  Bayesian EEG source localization using a structured sparsity prior , 2017, NeuroImage.

[15]  M. Clerc,et al.  Uniqueness result for an inverse conductivity recovery problem with application to EEG , 2016 .

[16]  D. Caparoska,et al.  Refractory Epilepsy-MRI, EEG and CT scan, a Correlative Clinical Study , 2016, Open access Macedonian journal of medical sciences.

[17]  Jérémi Dardé,et al.  Iterated quasi-reversibility method applied to elliptic and parabolic data completion problems , 2015, 1503.08641.

[18]  Alberto Sorrentino,et al.  Sequential Monte Carlo samplers for semi-linear inverse problems and application to magnetoencephalography , 2014, 1409.8109.

[19]  Charles Dapogny,et al.  Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems , 2014, J. Comput. Phys..

[20]  Martin Luessi,et al.  MNE software for processing MEG and EEG data , 2014, NeuroImage.

[21]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[22]  M. Clerc,et al.  Comparison of Boundary Element and Finite Element Approaches to the EEG Forward Problem , 2012, Biomedizinische Technik. Biomedical engineering.

[23]  Jérôme Le Rousseau,et al.  On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations , 2012 .

[24]  M. Hämäläinen,et al.  Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods , 2012, Physics in medicine and biology.

[25]  Théodore Papadopoulo,et al.  Forward Field Computation with OpenMEEG , 2011, Comput. Intell. Neurosci..

[26]  Jérémie Dardé Méthodes de quasi-réversibilité et de lignes de niveau appliquées aux problèmes inverses elliptiques , 2010 .

[27]  Jérémi Dardé,et al.  A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data , 2010 .

[28]  J. Partington,et al.  Bounded Extremal and Cauchy–Laplace Problems on the Sphere and Shell , 2010 .

[29]  Lauri Parkkonen,et al.  Dynamical MEG source modeling with multi‐target Bayesian filtering , 2009, Human brain mapping.

[30]  D. Wipf,et al.  A unified Bayesian framework for MEG/EEG source imaging , 2009, NeuroImage.

[31]  Bart Vanrumste,et al.  Journal of Neuroengineering and Rehabilitation Open Access Review on Solving the Inverse Problem in Eeg Source Analysis , 2022 .

[32]  Juliette Leblond,et al.  Source localization in ellipsoids by the best meromorphic approximation in planar sections , 2008 .

[33]  A. Aarabi,et al.  High‐resolution electroencephalography and source localization in neonates , 2008, Human brain mapping.

[34]  Harald Köstler,et al.  Numerical Mathematics of the Subtraction Method for the Modeling of a Current Dipole in EEG Source Reconstruction Using Finite Element Head Models , 2007, SIAM J. Sci. Comput..

[35]  Jean Gotman,et al.  Evaluation of EEG localization methods using realistic simulations of interictal spikes , 2006, NeuroImage.

[36]  A. Dale,et al.  Distributed current estimates using cortical orientation constraints , 2006, Human brain mapping.

[37]  Laurent Bourgeois,et al.  A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace's equation , 2005 .

[38]  Benoît Champagne,et al.  Statistical maps for EEG dipolar source localization , 2005, IEEE Transactions on Biomedical Engineering.

[39]  J. Leblond,et al.  Recovery of pointwise sources or small inclusions in 2D domains and rational approximation , 2005 .

[40]  Olivier D. Faugeras,et al.  A common formalism for the Integral formulations of the forward EEG problem , 2005, IEEE Transactions on Medical Imaging.

[41]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[42]  David Poeppel,et al.  Application of an MEG eigenspace beamformer to reconstructing spatio‐temporal activities of neural sources , 2002, Human brain mapping.

[43]  Isabelle Bloch,et al.  F.E.M. tetrahedral mesh of head tissues from M.R.I. under geometrical and topological constraints for applications in E.E.G. and M.E.G. , 2001, NeuroImage.

[44]  A. E. Badia,et al.  An Inverse Source Problem in Potential Analysis , 2000 .

[45]  R. Leahy,et al.  EEG and MEG: forward solutions for inverse methods , 1999, IEEE Transactions on Biomedical Engineering.

[46]  J.C. Mosher,et al.  Recursive MUSIC: A framework for EEG and MEG source localization , 1998, IEEE Transactions on Biomedical Engineering.

[47]  Richard M. Leahy,et al.  Source localization using recursively applied and projected (RAP) MUSIC , 1997, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).

[48]  J. D. Munck,et al.  A fast method to compute the potential in the multisphere model (EEG application) , 1993, IEEE Transactions on Biomedical Engineering.

[49]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[50]  Laurent Baratchart,et al.  Uniqueness results for 2D inverse Robin problems with bounded coefficient , 2015 .

[51]  M R Schneider,et al.  A multistage process for computing virtual dipolar sources of EEG discharges from surface information. , 1972, IEEE transactions on bio-medical engineering.

[52]  Robert Lattès,et al.  Méthode de quasi-réversibilbilité et applications , 1967 .

[53]  M. Protter UNIQUE CONTINUATION FOR ELLIPTIC EQUATIONS( , 1960 .