Further insights into an implicit time integration scheme for structural dynamics

Abstract The objective in this paper is to present some new insights into an implicit direct time integration scheme, the Bathe method, for the solution of the finite element equations of structural dynamics. The insights pertain to the use of the parameters in the method, and in particular the value of the time step splitting ratio. We show that with appropriate values of this ratio large amplitude decays can be obtained as may be desirable in some solutions. We give the theoretical analysis of the method for the parameters used, including for very large time steps, and illustrate numerically the new insights gained.

[1]  T. Belytschko,et al.  Computational Methods for Transient Analysis , 1985 .

[2]  Klaus-Jürgen Bathe,et al.  Transient implicit wave propagation dynamics with overlapping finite elements , 2018 .

[3]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[4]  K. J. Bathe,et al.  Frontiers in Finite Element Procedures and Applications , 2014 .

[5]  K. Bathe,et al.  An explicit time integration scheme for the analysis of wave propagations , 2013 .

[6]  F. Montáns,et al.  The value of numerical amplification matrices in time integration methods , 2013 .

[7]  K. Bathe Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme , 2007 .

[8]  K. Bathe,et al.  On a composite implicit time integration procedure for nonlinear dynamics , 2005 .

[9]  Kumar K. Tamma,et al.  Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics , 2004 .

[10]  K. Bathe,et al.  Performance of an implicit time integration scheme in the analysis of wave propagations , 2013 .

[11]  Suchuan Dong,et al.  BDF-like methods for nonlinear dynamic analysis , 2010, J. Comput. Phys..

[12]  Jae-Myung Lee,et al.  A non-oscillatory time integration method for numerical simulation of stress wave propagations , 2017 .

[13]  K. J. BATHES,et al.  NONLINEAR DYNAMIC ANALYSIS OF COMPLEX STRUCTURES , 2006 .

[14]  Werner Wagner,et al.  Enhanced studies on a composite time integration scheme in linear and non-linear dynamics , 2015 .

[15]  K. Bathe,et al.  The method of finite spheres for wave propagation problems , 2014 .

[16]  K. Bathe,et al.  Insight into an implicit time integration scheme for structural dynamics , 2012 .

[17]  K. Bathe,et al.  Transient implicit wave propagation dynamics with the method of finite spheres , 2016 .

[18]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[19]  K. Bathe,et al.  Stability and accuracy analysis of direct integration methods , 1972 .

[20]  Donghuan Liu,et al.  Accuracy of a composite implicit time integration scheme for structural dynamics , 2017 .

[21]  K. Bathe Finite Element Procedures , 1995 .

[22]  K. Bathe,et al.  Finite element developments for general fluid flows with structural interactions , 2004 .

[23]  Daining Fang,et al.  A novel sub-step composite implicit time integration scheme for structural dynamics , 2017 .

[24]  S. M. Spottswood,et al.  A robust composite time integration scheme for snap-through problems , 2015 .