Inverse uncertainty quantification using the modular Bayesian approach based on Gaussian Process, Part 2: Application to TRACE
暂无分享,去创建一个
Tomasz Kozlowski | Xu Wu | Hadi Meidani | Koroush Shirvan | H. Meidani | K. Shirvan | T. Kozlowski | Xu Wu
[1] Tomasz Kozlowski,et al. Kriging-based inverse uncertainty quantification of nuclear fuel performance code BISON fission gas release model using time series measurement data , 2018, Reliab. Eng. Syst. Saf..
[2] Dan G. Cacuci,et al. Reducing Uncertainties via Predictive Modeling: FLICA4 Calibration Using BFBT Benchmarks , 2014 .
[3] Tomasz Kozlowski,et al. Inverse uncertainty quantification of TRACE physical model parameters using sparse gird stochastic collocation surrogate model , 2017 .
[4] Robert Youngblood,et al. Demonstration of Emulator-Based Bayesian Calibration of Safety Analysis Codes: Theory and Formulation , 2015 .
[5] Francesco Saverio D'Auria,et al. The Best Estimate Plus Uncertainty (BEPU) approach in licensing of current nuclear reactors , 2012 .
[6] Gabriel Terejanu,et al. Data partition methodology for validation of predictive models , 2013, Comput. Math. Appl..
[7] Gary E. Wilson,et al. Historical insights in the development of Best Estimate Plus Uncertainty safety analysis , 2013 .
[8] Tomasz Kozlowski,et al. Inverse uncertainty quantification of input model parameters for thermal-hydraulics simulations using expectation–maximization under Bayesian framework , 2015 .
[9] Peter Z. G. Qian,et al. Bayesian Hierarchical Modeling for Integrating Low-Accuracy and High-Accuracy Experiments , 2008, Technometrics.
[10] Sankaran Mahadevan,et al. Optimal Test Selection for Prediction Uncertainty Reduction , 2016 .
[11] Tomasz Kozlowski,et al. Inverse uncertainty quantification of trace physical model parameters using BFBT benchmark data , 2016 .
[12] François M. Hemez,et al. Improved best estimate plus uncertainty methodology, including advanced validation concepts, to license evolving nuclear reactors , 2011 .
[13] Bertrand Iooss,et al. Numerical studies of the metamodel fitting and validation processes , 2010, 1001.1049.
[14] H. Meidani,et al. Inverse uncertainty quantification using the modular Bayesian approach based on Gaussian process, Part 1: Theory , 2018, Nuclear Engineering and Design.
[15] M. Glück,et al. Validation of the sub-channel code F-COBRA-TF: Part II. Recalculation of void measurements , 2008 .
[16] Erica M. Rutter,et al. A calibration and data assimilation method using the Bayesian MARS emulator , 2013 .
[17] T. Kozlowski,et al. Inverse uncertainty quantification of reactor simulations under the Bayesian framework using surrogate models constructed by polynomial chaos expansion , 2017 .
[18] Franccois Bachoc,et al. Calibration and Improved Prediction of Computer Models by Universal Kriging , 2013, 1301.4114.
[19] Thomas J. Downar,et al. Surrogate-based multi-experiment calibration of the BISON fission gas behavior model , 2017 .
[20] Christophe Andrieu,et al. A tutorial on adaptive MCMC , 2008, Stat. Comput..
[21] Alessandro Petruzzi,et al. Best-Estimate Model Calibration and Prediction through Experimental Data Assimilation—II: Application to a Blowdown Benchmark Experiment , 2010 .
[22] Dave Higdon,et al. Calibration of tuning parameters in the FRAPCON model , 2013 .
[23] Lawrence E. Hochreiter,et al. NEA NUCLEAR SCIENCE COMMITTEE NEA COMMITTEE ON SAFETY OF NUCLEAR INSTALLATIONS NUPEC BWR FULL-SIZE FINE-MESH BUNDLE TEST (BFBT) BENCHMARK Volume I: Specifications , 2005 .