Diameter of Colorings Under Kempe Changes
暂无分享,去创建一个
Marthe Bonamy | Takehiro Ito | Kunihiro Wasa | Moritz Mühlenthaler | Akira Suzuki | Marc Heinrich | Yusuke Kobayashi | Haruka Mizuta
[1] Paul S. Bonsma,et al. Using Contracted Solution Graphs for Solving Reconfiguration Problems , 2016, MFCS.
[2] Robert E. Tarjan,et al. Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..
[3] Jan van den Heuvel,et al. The complexity of change , 2013, Surveys in Combinatorics.
[4] Henry Meyniel,et al. Les 5-colorations d'un graphe planaire forment une classe de commutation unique , 1978, J. Comb. Theory B.
[5] A. Kempe. On the Geographical Problem of the Four Colours , 1879 .
[6] Erik D. Demaine,et al. PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation , 2002, Theor. Comput. Sci..
[7] Marthe Bonamy,et al. On a conjecture of Mohar concerning Kempe equivalence of regular graphs , 2015, J. Comb. Theory B.
[8] Michel Las Vergnas,et al. Kempe classes and the Hadwiger Conjecture , 1981, J. Comb. Theory B.
[9] Rolf Wanka,et al. On the Connectedness of Clash-free Timetables , 2015, ArXiv.
[10] B. Mohar. Kempe Equivalence of Colorings , 2006 .
[11] Walter J. Savitch,et al. Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..
[12] Jan van den Heuvel,et al. Finding paths between 3‐colorings , 2011, IWOCA.
[13] B. Mohar,et al. On the non-ergodicity of the Swendsen–Wang–Kotecký algorithm on the kagomé lattice , 2010, 1002.4279.
[14] Eric Vigoda. Improved bounds for sampling colorings , 2000 .
[15] Bojan Mohar,et al. A new Kempe invariant and the (non)-ergodicity of the Wang–Swendsen–Kotecký algorithm , 2009, 0901.1010.
[16] Rolf Wanka,et al. Fairness in academic course timetabling , 2013, Annals of Operations Research.
[17] Takehiro Ito,et al. The Coloring Reconfiguration Problem on Specific Graph Classes , 2017, COCOA.
[18] V. G. Vizing,et al. New proof of brooks' theorem , 1969 .
[19] Paul S. Bonsma,et al. Finding Paths between graph colourings: PSPACE-completeness and superpolynomial distances , 2007, Theor. Comput. Sci..