Transient spheroidal elements for unbounded wave problems

A wave-envelope element numerical scheme is applied to the solution of unbounded wave problems. The scheme is based on a Fourier transformation of a discrete model formulated in the frequency domain. This yields a discrete system of ordinary differential equations in time which are local in space. Oblate and prolate spheroidal element geometries are used. The accuracy of the scheme is demonstrated by a comparison of computed and analytic solutions for axisymmetric test cases. Time-harmonic and transient solution are presented. An indirect solution procedure is also presented which permits the sparsity of the transient equations to be utilised more effectively.

[1]  O. C. Zienkiewicz,et al.  Diffraction and refraction of surface waves using finite and infinite elements , 1977 .

[2]  R. J. Astley TRANSIENT WAVE ENVELOPE ELEMENTS FOR WAVE PROBLEMS , 1996 .

[3]  T. Hughes,et al.  Studies of domain‐based formulations for computing exterior problems of acoustics , 1994 .

[4]  G. F. Miller,et al.  The application of integral equation methods to the numerical solution of some exterior boundary-value problems , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[5]  Lorraine G. Olson,et al.  An infinite element for analysis of transient fluid—structure interactions , 1985 .

[6]  R. J. Astley,et al.  Wave envelope and infinite elements for acoustical radiation , 1983 .

[7]  David S. Burnett,et al.  A three‐dimensional acoustic infinite element based on a prolate spheroidal multipole expansion , 1994 .

[8]  O. C. Zienkiewicz,et al.  Mapped infinite elements for exterior wave problems , 1985 .

[10]  Peter M. Pinsky,et al.  Local high‐order radiation boundary conditions for the two‐dimensional time‐dependent structural acoustics problem , 1992 .

[11]  Carlos A. Felippa,et al.  Doubly asymptotic approximations for vibration analysis of submerged structures , 1982 .

[12]  K. Fyfe,et al.  A Variable Order Infinite Acoustic Wave Envelope Element , 1994 .

[13]  Marcus J. Grote,et al.  On nonreflecting boundary conditions , 1995 .

[14]  K. R. Fyfe,et al.  ON THE USE OF VARIABLE ORDER INFINITE WAVE ENVELOPE ELEMENTS FOR ACOUSTIC RADIATION AND SCATTERING , 1995 .

[15]  Dan Givoli,et al.  Solution of unbounded domain problems using elliptic artificial boundaries , 1995 .

[16]  J. Keller,et al.  Exact non-reflecting boundary conditions , 1989 .

[17]  A. Majda,et al.  Radiation boundary conditions for acoustic and elastic wave calculations , 1979 .

[18]  Advanced development of time-domain BEM for two-dimensional scalar wave propagation , 1990 .

[19]  R. J. Astley,et al.  Mapped spheroidal wave-envelope elements for unbounded wave problems , 1998 .

[21]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[22]  Walter Eversman,et al.  Aft Fan Duct Acoustic Radiation , 1998 .

[23]  C. Wilcox An expansion theorem for electromagnetic fields , 1956 .

[24]  A three dimensional infinite element for wave propagation , 1987 .

[25]  Ahmed K. Noor,et al.  Approximate techniques of strctural reanalysis , 1974 .

[26]  R. J. Astley,et al.  Mapped Wave Envelope Elements for Acoustical Radiation and Scattering , 1994 .

[27]  H. A. Schenck Improved Integral Formulation for Acoustic Radiation Problems , 1968 .

[28]  Robert J. Bernhard,et al.  Transient analysis of three‐dimensional wave propagation using the boundary element method , 1987 .

[29]  D. Givoli,et al.  Nonreflecting boundary conditions based on Kirchhoff-type formulae , 1995 .

[30]  G. C. Everstine,et al.  Coupled finite element/boundary element approach for fluid–structure interaction , 1990 .

[31]  R. J. Astley,et al.  A Note on the Utility of a Wave Envelope Approach in Finite Element Duct Transmission Studies , 1981 .

[32]  M. Gunzburger,et al.  Boundary conditions for the numerical solution of elliptic equations in exterior regions , 1982 .