Relatively quantified constraint satisfaction

The constraint satisfaction problem (CSP) is a convenient framework for modelling search problems; the CSP involves deciding, given a set of constraints on variables, whether or not there is an assignment to the variables satisfying all of the constraints. This paper is concerned with the more general framework of quantified constraint satisfaction, in which variables can be quantified both universally and existentially. We study the relatively quantified constraint satisfaction problem (RQCSP), in which the values for each individual variable can be arbitrarily restricted. We give a complete complexity classification of the cases of the RQCSP where the types of constraints that may appear are specified by a constraint language.

[1]  Hubie Chen Quantified Constraint Satisfaction, Maximal Constraint Languages, and Symmetric Polymorphisms , 2005, STACS.

[2]  Hubie Chen The Computational Complexity of Quantified Constraint Satisfaction , 2004 .

[3]  Andrei A. Bulatov,et al.  Tractable conservative constraint satisfaction problems , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[4]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[5]  P. Jeavons,et al.  The complexity of constraint satisfaction : an algebraic approach. , 2005 .

[6]  Andrei A. Bulatov,et al.  Learnability of Relatively Quantified Generalized Formulas , 2004, ALT.

[7]  Peter Jeavons,et al.  Quantified Constraints: Algorithms and Complexity , 2003, CSL.

[8]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[9]  Hubie Chen,et al.  The Complexity of Quantified Constraint Satisfaction: Collapsibility, Sink Algebras, and the Three-Element Case , 2006, SIAM J. Comput..

[10]  Justin Pearson,et al.  Closure Functions and Width 1 Problems , 1999, CP.

[11]  Phokion G. Kolaitis,et al.  Closures and dichotomies for quantified constraints , 2006, Electron. Colloquium Comput. Complex..

[12]  Heribert Vollmer,et al.  Playing with Boolean Blocks , Part II : Constraint Satisfaction Problems 1 , 2004 .

[13]  Peter Jeavons,et al.  Constraint Satisfaction Problems and Finite Algebras , 2000, ICALP.

[14]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraint satisfaction problems on a 3-element set , 2006, JACM.

[15]  Andrei A. Bulatov,et al.  A Simple Algorithm for Mal'tsev Constraints , 2006, SIAM J. Comput..

[16]  Sanjeev Khanna,et al.  3. Boolean Constraint Satisfaction Problems , 2001 .

[17]  Lane A. Hemaspaandra SIGACT news complexity theory column 43 , 2004, SIGA.

[18]  Reinhard Pöschel,et al.  Funktionen- und Relationenalgebren , 1979 .

[19]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[20]  Barnaby Martin,et al.  Towards a Trichotomy for Quantified H-Coloring , 2006, CiE.

[21]  Víctor Dalmau Lloret Some dichotomy theorems on constant-free quantified Boolean formulas , 1997 .

[22]  Martin C. Cooper,et al.  Constraints, Consistency and Closure , 1998, Artif. Intell..

[23]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[24]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..