Interpretation of karyotype evolution should consider chromosome structural constraints.

[1]  Joachim Messing,et al.  Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. , 2010, Genome research.

[2]  Joachim Messing,et al.  Palaeogenomics of plants: synteny-based modelling of extinct ancestors. , 2010, Trends in plant science.

[3]  Jan P. Buchmann,et al.  Patching gaps in plant genomes results in gene movement and erosion of colinearity. , 2010, Genome research.

[4]  Martin Krzywinski,et al.  Fast Diploidization in Close Mesopolyploid Relatives of Arabidopsis[W][OA] , 2010, Plant Cell.

[5]  M. Nussenzweig,et al.  Origin of Chromosomal Translocations in Lymphoid Cancer , 2010, Cell.

[6]  Lex E. Flagel,et al.  Homoeologous nonreciprocal recombination in polyploid cotton. , 2010, The New phytologist.

[7]  J. Chris Pires,et al.  Homoeologous recombination in allopolyploids: the polyploid ratchet. , 2010, The New phytologist.

[8]  Sai Guna Ranjan Gurazada,et al.  Genome sequencing and analysis of the model grass Brachypodium distachyon , 2010, Nature.

[9]  F. Piras,et al.  Uncoupling of Satellite DNA and Centromeric Function in the Genus Equus , 2010, PLoS genetics.

[10]  T. Sakurai,et al.  Genome sequence of the palaeopolyploid soybean , 2010, Nature.

[11]  Asan,et al.  The genome of the cucumber, Cucumis sativus L. , 2009, Nature Genetics.

[12]  T. Graves,et al.  The Physical and Genetic Framework of the Maize B73 Genome , 2009, PLoS genetics.

[13]  S. Jackson,et al.  Three Sequenced Legume Genomes and Many Crop Species: Rich Opportunities for Translational Genomics , 2009, Plant Physiology.

[14]  M T Clegg,et al.  Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae , 2009, Proceedings of the National Academy of Sciences.

[15]  W. Jin,et al.  Centromere repositioning in cucurbit species: Implication of the genomic impact from centromere activation and inactivation , 2009, Proceedings of the National Academy of Sciences.

[16]  Joachim Messing,et al.  Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals , 2009, Proceedings of the National Academy of Sciences.

[17]  I. Grosse,et al.  Evidence and evolutionary analysis of ancient whole-genome duplication in barley predating the divergence from rice , 2009, BMC Evolutionary Biology.

[18]  M. Lysak,et al.  Chromosomal Phylogeny and Karyotype Evolution in x=7 Crucifer Species (Brassicaceae)[W] , 2008, The Plant Cell Online.

[19]  J. Macas,et al.  Survey of extrachromosomal circular DNA derived from plant satellite repeats , 2008, BMC Plant Biology.

[20]  Stephen M. Mount,et al.  The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus) , 2008, Nature.

[21]  J. Salse,et al.  Identification and Characterization of Shared Duplications between Rice and Wheat Provide New Insight into Grass Genome Evolution[W] , 2008, The Plant Cell Online.

[22]  Andreas Houben,et al.  Extrachromosomal circular DNA derived from tandemly repeated genomic sequences in plants. , 2007, The Plant journal : for cell and molecular biology.

[23]  M. Ferguson-Smith,et al.  Mammalian karyotype evolution , 2007, Nature Reviews Genetics.

[24]  P. Bureš,et al.  Ancestral Chromosomal Blocks Are Triplicated in Brassiceae Species with Varying Chromosome Number and Genome Size1 , 2007, Plant Physiology.

[25]  Steven G. Schroeder,et al.  Physical and Genetic Structure of the Maize Genome Reflects Its Complex Evolutionary History , 2007, PLoS genetics.

[26]  Francesca Antonacci,et al.  Evolutionary Formation of New Centromeres in Macaque , 2007, Science.

[27]  Guillaume Le Mignon,et al.  Homeologous Recombination Plays a Major Role in Chromosome Rearrangements That Occur During Meiosis of Brassica napus Haploids , 2007, Genetics.

[28]  K. McBreen,et al.  Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[29]  F. Han,et al.  High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[30]  I. Schubert,et al.  Stable barley chromosomes without centromeric repeats. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. Koch,et al.  Chromosome triplication found across the tribe Brassiceae. , 2005, Genome research.

[32]  M. Kiefer,et al.  Genome evolution among cruciferous plants: a lecture from the comparison of the genetic maps of three diploid species--Capsella rubella, Arabidopsis lyrata subsp. petraea, and A. thaliana. , 2005, American journal of botany.

[33]  Jessica A Schlueter,et al.  Mining EST databases to resolve evolutionary events in major crop species. , 2004, Genome.

[34]  D. Kostiner,et al.  Stabilization of a terminal inversion duplication of 8p by telomere capture from 18q , 2003, Cytogenetic and Genome Research.

[35]  K. Choo,et al.  Neocentromeres: role in human disease, evolution, and centromere study. , 2002, American journal of human genetics.

[36]  I. Schubert,et al.  Alteration of chromosome numbers by generation of minichromosomes – Is there a lower limit of chromosome size for stable segregation? , 2001, Cytogenetic and Genome Research.

[37]  G. Karpen,et al.  The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere. , 2001, Genetics.

[38]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[39]  H. Puchta,et al.  Species‐specific double‐strand break repair and genome evolution in plants , 2000, The EMBO journal.

[40]  H. Tsujimoto,et al.  De novo synthesis of telomere sequences at the healed breakpoints of wheat deletion chromosomes , 1999, Molecular and General Genetics MGG.

[41]  T. Cech,et al.  Two modes of survival of fission yeast without telomerase. , 1998, Science.

[42]  S. Oliver,et al.  Erratum: Overview of the yeast genome , 1997, Nature.

[43]  J. Fuchs,et al.  Alteration of basic chromosome number by fusion-fission cycles. , 1995, Genome.

[44]  J. Fuchs,et al.  Sequence organization and the mechanism of interstitial deletion clustering in a plant genome (Vicia faba). , 1994, Mutation research.

[45]  L. Harrington Telomerase primer specificity and chromosome healing , 1991, Nature.

[46]  S. Khandelwal Chromosome evolution in the genus Ophioglossum L. , 1990 .

[47]  Robert W. Taylor,et al.  Chromosomal polymorphisms involving telomere fusion, centromeric inactivation and centromere shift in the ant Myrmecia (pilosula) n=1 , 1989, Chromosoma.

[48]  D. Pinkel,et al.  Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[49]  D. Ward,et al.  Rapid detection of human chromosome 21 aberrations by in situ hybridization. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[50]  I. Schubert,et al.  On the toleration of duplications and deletions by the Vicia faba genome , 1988, Theoretical and Applied Genetics.

[51]  I. Schubert,et al.  A new mechanism for altering chromosome number during karyotype evolution , 1985, Theoretical and Applied Genetics.

[52]  I. Schubert Mobile nucleolus organizing regions (NORs) inAllium (Liliaceae s. lat.)? — Inferences from the specifity of silver staining , 1984, Plant Systematics and Evolution.

[53]  Archana Sharma,et al.  Chromosomes In Evolution Of Eukaryotic Groups , 1984 .

[54]  H. A. Tobgy,et al.  A cytological study ofCrepis fuliginosa, C. Neglecta, and theirF1 hybrid, and its bearing on the mechanism of phylogenetic reduction in chromosome number , 1943, Journal of Genetics.

[55]  H. Muller An analysis of the process of structural change in chromosomes ofDrosophila , 1940, Journal of Genetics.

[56]  D. Sankoff,et al.  Polyploidy and angiosperm diversification. , 2009, American journal of botany.

[57]  M. M. Green,et al.  Glossary of genetics : classical and molecular , 1991 .

[58]  Sparrow Ah,et al.  A survey of DNA content per cell and per chromosome of prokaryotic and eukaryotic organisms: some evolutionary considerations. , 1972 .

[59]  G. Ledyard Stebbins,et al.  Chromosomal evolution in higher plants , 1971 .

[60]  C. D. Darlington Recent advances in cytology , 1932 .