The Impact of Chronic Intestinal Inflammation on Brain Disorders: the Microbiota-Gut-Brain Axis

[1]  D. Nielsen,et al.  A prebiotic intervention study in children with autism spectrum disorders (ASDs) , 2018, Microbiome.

[2]  Xiaoli Wu,et al.  Recognizing Depression from the Microbiota–Gut–Brain Axis , 2018, International journal of molecular sciences.

[3]  F. Sharp,et al.  Lipopolysaccharide Associates with Amyloid Plaques, Neurons and Oligodendrocytes in Alzheimer’s Disease Brain: A Review , 2018, Front. Aging Neurosci..

[4]  M. Vannucchi,et al.  Experimental Models of Irritable Bowel Syndrome and the Role of the Enteric Neurotransmission , 2018, Journal of clinical medicine.

[5]  A. Keshavarzian,et al.  The gut‐brain axis in Parkinson's disease: Possibilities for food‐based therapies , 2017, European journal of pharmacology.

[6]  B. Mason Feeding Systems and the Gut Microbiome: Gut-Brain Interactions With Relevance to Psychiatric Conditions. , 2017, Psychosomatics.

[7]  Sterling C. Johnson,et al.  Gut microbiome alterations in Alzheimer’s disease , 2017, Scientific Reports.

[8]  J. Schott,et al.  Current concepts and controversies in the pathogenesis of Parkinson’s disease dementia and Dementia with Lewy Bodies , 2017, F1000Research.

[9]  C. Lebrilla,et al.  Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion , 2017, Science.

[10]  W. Zhou,et al.  Oroxylin A inhibits colitis by inactivating NLRP3 inflammasome , 2017, Oncotarget.

[11]  K. Saad,et al.  The role of probiotics in children with autism spectrum disorder: A prospective, open-label study , 2017, Nutritional neuroscience.

[12]  M. Mack,et al.  Myeloid-derived miR-223 regulates intestinal inflammation via repression of the NLRP3 inflammasome , 2017, The Journal of experimental medicine.

[13]  G. Rossi,et al.  Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels , 2017, Scientific Reports.

[14]  F. Marotta,et al.  Gut microbiota: A player in aging and a target for anti-aging intervention , 2017, Ageing Research Reviews.

[15]  R. Hagerman,et al.  The Gut Microbiota and Autism Spectrum Disorders , 2017, Front. Cell. Neurosci..

[16]  N. Zmora,et al.  Inflammasomes and intestinal inflammation , 2017, Mucosal Immunology.

[17]  E. Hsiao,et al.  Emerging Roles for the Gut Microbiome in Autism Spectrum Disorder , 2017, Biological Psychiatry.

[18]  N. Talley,et al.  The mucosal immune system: master regulator of bidirectional gut–brain communications , 2017, Nature Reviews Gastroenterology &Hepatology.

[19]  Duccio Cavalieri,et al.  New evidences on the altered gut microbiota in autism spectrum disorders , 2017, Microbiome.

[20]  G. Frisoni,et al.  Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota , 2017, Scientific Reports.

[21]  M. Udayabanu,et al.  Gut microbiota: Implications in Parkinson's disease , 2017, Parkinsonism & Related Disorders.

[22]  M. Hornef,et al.  Does a prenatal bacterial microbiota exist? , 2017, Mucosal Immunology.

[23]  E. Hsiao,et al.  Interactions between the microbiota, immune and nervous systems in health and disease , 2017, Nature Neuroscience.

[24]  M. Tansey,et al.  The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? , 2017, npj Parkinson's Disease.

[25]  S. Brant,et al.  The Pathogenic Role of NLRP3 Inflammasome Activation in Inflammatory Bowel Diseases of Both Mice and Humans , 2016, Journal of Crohn's & colitis.

[26]  N. Oezguen,et al.  Distinct Microbiome-Neuroimmune Signatures Correlate With Functional Abdominal Pain in Children With Autism Spectrum Disorder , 2016, Cellular and molecular gastroenterology and hepatology.

[27]  J. Leszek,et al.  Inflammatory Response in the CNS: Friend or Foe? , 2016, Molecular Neurobiology.

[28]  G. Boylan,et al.  Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers , 2016, Translational psychiatry.

[29]  S. Esposito,et al.  Microbiota and neurologic diseases: potential effects of probiotics , 2016, Journal of Translational Medicine.

[30]  M. Schwartz,et al.  Neurological Disease as a Failure of Brain-Immune Crosstalk: The Multiple Faces of Neuroinflammation. , 2016, Trends in immunology.

[31]  P. Ritvo,et al.  Probiotic supplementation can positively affect anxiety and depressive symptoms: a systematic review of randomized controlled trials. , 2016, Nutrition research.

[32]  G. Núñez,et al.  Mechanisms of inflammation-driven bacterial dysbiosis in the gut , 2016, Mucosal Immunology.

[33]  K. Blennow,et al.  Alzheimer's disease , 2016, The Lancet.

[34]  D. Haller,et al.  Dysbiosis in intestinal inflammation: Cause or consequence. , 2016, International journal of medical microbiology : IJMM.

[35]  D. N. Harpp,et al.  Microbiota and Neurological Disorders: A Gut Feeling , 2016, BioResearch open access.

[36]  J Licinio,et al.  From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways , 2016, Molecular Psychiatry.

[37]  S. Salminen,et al.  Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid , 2016, Scientific Reports.

[38]  E. Distrutti,et al.  Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. , 2016, World journal of gastroenterology.

[39]  Anumantha Kanthasamy,et al.  Gut microbiome in health and disease: Linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. , 2016, Pharmacology & therapeutics.

[40]  A. Gasbarrini,et al.  Gut microbiota in autism and mood disorders. , 2016, World journal of gastroenterology.

[41]  T. Dinan,et al.  Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders , 2015, Front. Cell. Neurosci..

[42]  C. Rosenfeld Microbiome Disturbances and Autism Spectrum Disorders , 2015, Drug Metabolism and Disposition.

[43]  A. Lang,et al.  Parkinson's disease , 2015, The Lancet.

[44]  E. Pekkonen,et al.  Gut microbiota are related to Parkinson's disease and clinical phenotype , 2015, Movement disorders : official journal of the Movement Disorder Society.

[45]  D. Ostatníková,et al.  Gastrointestinal microbiota in children with autism in Slovakia , 2015, Physiology & Behavior.

[46]  Massimo Gadina,et al.  The JAK-STAT pathway: impact on human disease and therapeutic intervention. , 2015, Annual review of medicine.

[47]  J. Pekow,et al.  The emerging role of miRNAs in inflammatory bowel disease: a review , 2015, Therapeutic advances in gastroenterology.

[48]  R. Knight,et al.  Dietary effects on human gut microbiome diversity , 2014, British Journal of Nutrition.

[49]  Takanori Kanai,et al.  The gut microbiota and inflammatory bowel disease , 2014, Seminars in Immunopathology.

[50]  Jia-Yi Li,et al.  Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats , 2014, Acta Neuropathologica.

[51]  A. F. Mendes,et al.  Resveratrol Modulates Cytokine-Induced JAK/STAT Activation More Efficiently than 5-Aminosalicylic Acid: An In Vitro Approach , 2014, PloS one.

[52]  R. Flavell,et al.  Inflammasomes and intestinal homeostasis: regulating and connecting infection, inflammation and the microbiota. , 2014, International immunology.

[53]  L. Albenberg,et al.  Diet and the intestinal microbiome: associations, functions, and implications for health and disease. , 2014, Gastroenterology.

[54]  E. Hsiao Gastrointestinal Issues in Autism Spectrum Disorder , 2014, Harvard review of psychiatry.

[55]  O. Nielsen,et al.  Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. , 2013, Pharmacological research.

[56]  B. B. Finlay,et al.  The role of the immune system in governing host-microbe interactions in the intestine , 2013, Nature Immunology.

[57]  P. Denning,et al.  Therapeutic use of prebiotics, probiotics, and postbiotics to prevent necrotizing enterocolitis: what is the current evidence? , 2013, Clinics in perinatology.

[58]  T. Decker,et al.  The regulation of inflammation by interferons and their STATs , 2013, JAK-STAT.

[59]  Casey T. Weaver,et al.  Reciprocal interactions of the intestinal microbiota and immune system , 2012, Nature.

[60]  V. Annese,et al.  PPARγ in Inflammatory Bowel Disease , 2012, PPAR research.

[61]  T. Dinis,et al.  Cyanidin-3-Glucoside Suppresses Cytokine-Induced Inflammatory Response in Human Intestinal Cells: Comparison with 5-Aminosalicylic Acid , 2012, PloS one.

[62]  Henry C. Lin,et al.  Using Probiotics in Gastrointestinal Disorders , 2012 .

[63]  P. Rosenstiel,et al.  The JNK Inhibitor XG-102 Protects against TNBS-Induced Colitis , 2012, PloS one.

[64]  Richard A. Flavell,et al.  Inflammasomes in health and disease , 2012, Nature.

[65]  Ya-jing Feng,et al.  The role of p38 mitogen‐activated protein kinase in the pathogenesis of inflammatory bowel disease , 2011, Journal of digestive diseases.

[66]  Aletta D Kraneveld,et al.  Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management. , 2011, European journal of pharmacology.

[67]  L. Nagy,et al.  PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation☆ , 2011, Biochimica et biophysica acta.

[68]  S. Ghosh,et al.  Crosstalk in NF-κB signaling pathways , 2011, Nature Immunology.

[69]  B. Muguerza,et al.  Inhibition of ulcerative colitis in mice after oral administration of a polyphenol-enriched cocoa extract is mediated by the inhibition of STAT1 and STAT3 phosphorylation in colon cells. , 2011, Journal of agricultural and food chemistry.

[70]  M. Lamkanfi,et al.  The Nlrp3 inflammasome: contributions to intestinal homeostasis. , 2011, Trends in immunology.

[71]  S. Massart,et al.  Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa , 2010, Proceedings of the National Academy of Sciences.

[72]  A. Cuadrado,et al.  Mechanisms and functions of p38 MAPK signalling. , 2010, The Biochemical journal.

[73]  J. Tschopp,et al.  Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome , 2010, Gut.

[74]  Y. J. Kang,et al.  Distinct effects of p38alpha deletion in myeloid lineage and gut epithelia in mouse models of inflammatory bowel disease. , 2010, Gastroenterology.

[75]  M. Kastan,et al.  The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. , 2010, Immunity.

[76]  A. Macpherson,et al.  Immune adaptations that maintain homeostasis with the intestinal microbiota , 2010, Nature Reviews Immunology.

[77]  N. Herrmann,et al.  A Meta-Analysis of Cytokines in Major Depression , 2010, Biological Psychiatry.

[78]  J. Olsen,et al.  Mitogen activated protein kinases: a role in inflammatory bowel disease? , 2009, Clinical and experimental immunology.

[79]  T. Lawrence The nuclear factor NF-kappaB pathway in inflammation. , 2009, Cold Spring Harbor perspectives in biology.

[80]  M. Pasparakis,et al.  Regulation of tissue homeostasis by NF-κB signalling: implications for inflammatory diseases , 2009, Nature Reviews Immunology.

[81]  Cynthia L Sears,et al.  A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses , 2009, Nature Medicine.

[82]  J. Suls,et al.  Associations of Depression With C-Reactive Protein, IL-1, and IL-6: A Meta-Analysis , 2009, Psychosomatic medicine.

[83]  M. Neurath,et al.  NF‐κB in inflammatory bowel disease , 2008, Journal of internal medicine.

[84]  S. Uwe Anti-inflammatory interventions of NF-kappaB signaling: potential applications and risks. , 2008, Biochemical pharmacology.

[85]  J. Ibdah,et al.  Role of the JNK signal transduction pathway in inflammatory bowel disease. , 2008, World journal of gastroenterology.

[86]  B. Finlay,et al.  Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. , 2007, Cell host & microbe.

[87]  L. Augenlicht,et al.  Essential Role of the JAK/STAT1 Signaling Pathway in the Expression of Inducible Nitric-oxide Synthase in Intestinal Epithelial Cells and Its Regulation by Butyrate* , 2007, Journal of Biological Chemistry.

[88]  S. Legrand-Poels,et al.  NF-κB activation by reactive oxygen species: Fifteen years later , 2006 .

[89]  P. Desreumaux,et al.  Review article: mode of action and delivery of 5‐aminosalicylic acid – new evidence , 2006, Alimentary pharmacology & therapeutics.

[90]  X. Thuru,et al.  PPARγ as a new therapeutic target in inflammatory bowel diseases , 2006, Gut.

[91]  A. Hoffmann,et al.  Circuitry of nuclear factor κB signaling , 2006 .

[92]  S. Mariotto,et al.  STAT1 as a new molecular target of anti-inflammatory treatment. , 2005, Current medicinal chemistry.

[93]  J. Auwerx,et al.  Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator–activated receptor-γ , 2005, The Journal of experimental medicine.

[94]  Cynthia L. Sears,et al.  Bacteroides fragilis Enterotoxin Induces Intestinal Epithelial Cell Secretion of Interleukin-8 through Mitogen-Activated Protein Kinases and a Tyrosine Kinase-Regulated Nuclear Factor-κB Pathway , 2004, Infection and Immunity.

[95]  J. Saklatvala The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. , 2004, Current opinion in pharmacology.

[96]  Yong-Yeon Cho,et al.  Evidence of STAT1 phosphorylation modulated by MAPKs, MEK1 and MSK1. , 2004, Carcinogenesis.

[97]  J. Blenis,et al.  ERK and p38 MAPK-Activated Protein Kinases: a Family of Protein Kinases with Diverse Biological Functions , 2004, Microbiology and Molecular Biology Reviews.

[98]  A. Ayton Review , 2004, Nutritional neuroscience.

[99]  K. Shuai,et al.  Regulation of JAK–STAT signalling in the immune system , 2003, Nature Reviews Immunology.

[100]  Michael Kracht,et al.  Transcriptional and post-transcriptional control of gene expression in inflammation. , 2002, Cytokine.

[101]  G. Fantuzzi,et al.  IL-1β-converting enzyme (caspase-1) in intestinal inflammation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[102]  S. Rane,et al.  Janus kinases: components of multiple signaling pathways , 2000, Oncogene.

[103]  G. Stark,et al.  Complex roles of Stat1 in regulating gene expression , 2000, Oncogene.

[104]  Yajarayma J. Tang,et al.  Bacteroides fragilis enterotoxin gene sequences in patients with inflammatory bowel disease. , 2000, Emerging infectious diseases.

[105]  B. Williams,et al.  p38 MAP kinase is required for STAT1 serine phosphorylation and transcriptional activation induced by interferons , 1999, The EMBO journal.

[106]  R. Knuechel,et al.  Nuclear factor kappaB is activated in macrophages and epithelial cells of inflamed intestinal mucosa. , 1998, Gastroenterology.

[107]  M. Pasparakis,et al.  NF-κB in the regulation of epithelial homeostasis and inflammation , 2011, Cell Research.

[108]  N. Perkins,et al.  Integrating cell-signalling pathways with NF-κB and IKK function , 2007, Nature Reviews Molecular Cell Biology.

[109]  Christopher K. Glass,et al.  Combinatorial roles of nuclear receptors in inflammation and immunity , 2006, Nature Reviews Immunology.

[110]  D. Hommes,et al.  Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn's disease. , 2002, Gastroenterology.

[111]  D. Levy,et al.  Signalling: STATs: transcriptional control and biological impact , 2002, Nature Reviews Molecular Cell Biology.

[112]  I. Verma,et al.  NF-?B regulation in the immune system , 2002 .