Análise de Desempenho de Plataformas de Processamento de Grafos

Resumo. A análise de redes complexas, representadas por grafos, se aplica a diversas áreas do conhecimento. Este artigo analisa o desempenho de plataformas de processamento de grafos representativas de abordagens diversas ao problema. Também são considerados na análise realizada algoritmos de análise de grande interesse da comunidade (conectividade, centralidade e caminho), além de um conjunto de redes sintéticas e reais com caracterı́sticas topológicas e dimensões diversas. Os resultados experimentais obtidos contribuem com diretivas para que os interessados possam melhor elencar a plataforma de processamento de grafos mais eficiente a seus interesses de análise.

[1]  Christos Faloutsos,et al.  Kronecker Graphs: An Approach to Modeling Networks , 2008, J. Mach. Learn. Res..

[2]  Yue Zhao,et al.  Evaluation and Analysis of Distributed Graph-Parallel Processing Frameworks , 2014, J. Cyber Secur. Mobil..

[3]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[4]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[5]  Pradeep Dubey,et al.  Navigating the maze of graph analytics frameworks using massive graph datasets , 2014, SIGMOD Conference.

[6]  Christian Staudt,et al.  NetworKit: An Interactive Tool Suite for High-Performance Network Analysis , 2014, ArXiv.

[7]  Susan L. Graham,et al.  Gprof: A call graph execution profiler , 1982, SIGPLAN '82.

[8]  Reynold Xin,et al.  GraphX: Graph Processing in a Distributed Dataflow Framework , 2014, OSDI.

[9]  Alberto Montresor,et al.  An evaluation study of BigData frameworks for graph processing , 2013, 2013 IEEE International Conference on Big Data.

[10]  Jonathan W. Berry,et al.  Challenges in Parallel Graph Processing , 2007, Parallel Process. Lett..

[11]  J. Dall,et al.  Random geometric graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Fabricio A. Breve Machine learning in complex networks , 2010 .

[13]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[14]  M. Tamer Özsu,et al.  An Experimental Comparison of Pregel-like Graph Processing Systems , 2014, Proc. VLDB Endow..

[15]  Alexandru Iosup,et al.  LDBC Graphalytics: A Benchmark for Large-Scale Graph Analysis on Parallel and Distributed Platforms , 2016, Proc. VLDB Endow..

[16]  Michael J. Franklin,et al.  Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing , 2012, NSDI.

[17]  Yi Lu,et al.  Large-Scale Distributed Graph Computing Systems: An Experimental Evaluation , 2014, Proc. VLDB Endow..

[18]  Alexandru Iosup,et al.  How Well Do Graph-Processing Platforms Perform? An Empirical Performance Evaluation and Analysis , 2014, 2014 IEEE 28th International Parallel and Distributed Processing Symposium.

[19]  Salim Jouili,et al.  An Empirical Comparison of Graph Databases , 2013, 2013 International Conference on Social Computing.

[20]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[21]  Christian Staudt,et al.  An empirical comparison of Big Graph frameworks in the context of network analysis , 2016, Social Network Analysis and Mining.

[22]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[23]  Christos Faloutsos,et al.  Graph mining: Laws, generators, and algorithms , 2006, CSUR.

[24]  Aart J. C. Bik,et al.  Pregel: a system for large-scale graph processing , 2010, SIGMOD Conference.

[25]  Joseph Gonzalez,et al.  PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs , 2012, OSDI.