pH-dependent conformational changes of ferricytochrome c induced by electrode surface microstructure.

[1]  H. Santos,et al.  Effect of pH on axial ligand coordination of cytochrome c" from Methylophilus methylotrophus and horse heart cytochrome c. , 2000, Biochemistry.

[2]  D. Marsh,et al.  Conformational changes in cytochrome c and cytochrome oxidase upon complex formation: a resonance Raman study. , 1990, Biochemistry.

[3]  M. Antalík,et al.  Conformational stability of ferricytochrome c near the heme in its complex with heparin in alkaline pH , 2001 .

[4]  P. Haris,et al.  Protein secondary structure from Fourier transform infrared and/or circular dichroism spectra. , 1993, Analytical biochemistry.

[5]  M. Antalík,et al.  Effect of varying polyglutamate chain length on the structure and stability of ferricytochrome c. , 2003, Biochimica et biophysica acta.

[6]  W. Mäntele,et al.  Electrochemically induced conformational changes in cytochrome c monitored by Fourier transform infrared difference spectroscopy: influence of temperature, pH, and electrode surfaces. , 1993, Biochemistry.

[7]  J. J. Dougherty,et al.  pH-induced conformational states of bovine growth hormone. , 1990, Biochemistry.

[8]  S. Inglis,et al.  Identification of Lys79 as an iron ligand in one form of alkaline yeast iso-1-ferricytochrome c , 1993 .

[9]  C. Kay,et al.  Elimination of the negative soret Cotton effect of cytochrome c by replacement of the invariant phenylalanine using site-directed mutagenesis , 1986 .

[10]  D. Dixon,et al.  NMR study of the alkaline isomerization of ferricytochrome c , 1989, FEBS letters.

[11]  Zhennan Gu,et al.  Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. , 2002, Analytical chemistry.

[12]  F. Rosell,et al.  Proton-Linked Protein Conformational Switching: Definition of the Alkaline Conformational Transition of Yeast Iso-1-ferricytochrome c‡ , 1998 .

[13]  Richard J. Coles,et al.  Protein electrochemistry at carbon nanotube electrodes , 1997 .

[14]  J. Guss,et al.  Crystal structure analyses of reduced (CuI) poplar plastocyanin at six pH values. , 1987, Journal of molecular biology.

[15]  G. Brayer,et al.  High-resolution three-dimensional structure of horse heart cytochrome c. , 1990, Journal of molecular biology.

[16]  T. Spiro,et al.  Ionic strength dependence of cytochrome c structure and Trp-59 H/D exchange from ultraviolet resonance Raman spectroscopy. , 1989, Biochemistry.

[17]  E. Stellwagen,et al.  Participation of the protein ligands in the folding of cytochrome c. , 1972, Biochemistry.

[18]  C. Wharton,et al.  Fourier-transform infra-red studies of the alkaline isomerization of mitochondrial cytochrome c and the ionization of carboxylic acids. , 1989, Biochemical Journal.

[19]  S. Englander,et al.  Folding units govern the cytochrome c alkaline transition. , 2003, Journal of molecular biology.

[20]  S. Dong,et al.  The electrochemically induced conformational transition of disulfides in bovine serum albumin studied by thin layer circular dichroism spectroelectrochemistry. , 2001, Biophysical chemistry.

[21]  A. Thomson,et al.  Identification of the ligand-exchange process in the alkaline transition of horse heart cytochrome c. , 1987, The Biochemical journal.

[22]  H. Gray,et al.  Structural model for an alkaline form of ferricytochrome C. , 2003, Journal of the American Chemical Society.

[23]  R. L. Baldwin,et al.  Parameters of helix–coil transition theory for alanine‐based peptides of varying chain lengths in water , 1991, Biopolymers.

[24]  H. Theorell,et al.  Studies on Cytochrome c. II. The Optical Properties of Pure Cytochrome c and Some of Its Derivatives , 1941 .

[25]  I. Morishima,et al.  Nuclear magnetic resonance studies in hemoproteins. IX. pH dependent features of horse heart ferric cytochrome c. , 1977, Biochimica et biophysica acta.

[26]  A. Ranieri,et al.  Effects of specific anion-protein binding on the alkaline transition of cytochrome c. , 2001, Archives of biochemistry and biophysics.

[27]  A. Desideri,et al.  Anion size modulates the structure of the A state of cytochrome c. , 2000, Biochemistry.

[28]  R. Dickerson,et al.  Conformation change of cytochrome c. I. Ferrocytochrome c structure refined at 1.5 A resolution. , 1981, Journal of molecular biology.

[29]  G. Brayer,et al.  High-resolution refinement of yeast iso-1-cytochrome c and comparisons with other eukaryotic cytochromes c. , 1990, Journal of molecular biology.

[30]  F. Rosell,et al.  Alkaline Conformational Transitions of Ferricytochrome c Studied by Resonance Raman Spectroscopy , 1998 .

[31]  M. Antalík,et al.  Spectrophotometric detection of the interaction between cytochrome c and heparin. , 1992, Biochimica et biophysica acta.

[32]  S. H. Koenig,et al.  Some aspects of pH and temperature dependence of the NMR spectra of cytochrome C. , 1971, Biochemical and biophysical research communications.

[33]  N. C. Price,et al.  The application of circular dichroism to studies of protein folding and unfolding. , 1997, Biochimica et biophysica acta.

[34]  G. Brayer,et al.  Oxidation state-dependent conformational changes in cytochrome c. , 1992, Journal of molecular biology.

[35]  S. Dong,et al.  Conformational transition of DNA in electroreduction studied by in situ UV and CD thin layer spectroelectrochemistry. , 2000, Biophysical chemistry.

[36]  J. Deisenhofer,et al.  Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.