Reprogrammed genetic decoding in cellular gene expression.

[1]  D. Driscoll,et al.  Mechanism and regulation of selenoprotein synthesis. , 2003, Annual review of nutrition.

[2]  R. Gesteland,et al.  Programmed translational −1 frameshifting on hexanucleotide motifs and the wobble properties of tRNAs , 2003, The EMBO journal.

[3]  O. Nureki,et al.  Activation of the pyrrolysine suppressor tRNA requires formation of a ternary complex with class I and class II lysyl-tRNA synthetases. , 2003, Molecular cell.

[4]  Masaru Tomita,et al.  Computational Analysis of Stop Codon Readthrough in D.melanogaster , 2003, Bioinform..

[5]  D. Shippen,et al.  Developmentally Programmed Gene Elimination in Euplotes crassus Facilitates a Switch in the Telomerase Catalytic Subunit , 2003, Cell.

[6]  R. Guigó,et al.  Characterization of Mammalian Selenoproteomes , 2003, Science.

[7]  O. Namy,et al.  Identification of stop codon readthrough genes in Saccharomyces cerevisiae , 2003, Nucleic acids research.

[8]  M. Rossi,et al.  Identification of an archaeal alpha-L-fucosidase encoded by an interrupted gene. Production of a functional enzyme by mutations mimicking programmed -1 frameshifting. , 2003, The Journal of biological chemistry.

[9]  J. Dinman,et al.  The 9-A solution: how mRNA pseudoknots promote efficient programmed -1 ribosomal frameshifting. , 2003, RNA.

[10]  L. Klobutcher,et al.  Shifty Ciliates Frequent Programmed Translational Frameshifting in Euplotids , 2002, Cell.

[11]  A. Krol,et al.  Evolutionarily different RNA motifs and RNA-protein complexes to achieve selenoprotein synthesis. , 2002, Biochimie.

[12]  Raymond F. Gesteland,et al.  Computational identification of putative programmed translational frameshift sites , 2002, Bioinform..

[13]  Sean R. Eddy,et al.  A memory-efficient dynamic programming algorithm for optimal alignment of a sequence to an RNA secondary structure , 2002, BMC Bioinformatics.

[14]  Vadim N. Gladyshev,et al.  How Selenium Has Altered Our Understanding of the Genetic Code , 2002, Molecular and Cellular Biology.

[15]  Joseph A. Krzycki,et al.  Pyrrolysine Encoded by UAG in Archaea: Charging of a UAG-Decoding Specialized tRNA , 2002, Science.

[16]  C. James,et al.  A New UAG-Encoded Residue in the Structure of a Methanogen Methyltransferase , 2002, Science.

[17]  S. Lindquist,et al.  Hsp90 as a capacitor of phenotypic variation , 2002, Nature.

[18]  J. Kuriyan,et al.  Analysis of a Multicomponent Thermostable DNA Polymerase III Replicase from an Extreme Thermophile* , 2002, The Journal of Biological Chemistry.

[19]  Pavel V Baranov,et al.  Recoding: translational bifurcations in gene expression. , 2002, Gene.

[20]  Mark Gerstein,et al.  A small reservoir of disabled ORFs in the yeast genome and its implications for the dynamics of proteome evolution. , 2002, Journal of molecular biology.

[21]  M. Bonneville,et al.  +1 Frameshifting as a Novel Mechanism to Generate a Cryptic Cytotoxic T Lymphocyte Epitope Derived from Human Interleukin 10 , 2002, The Journal of experimental medicine.

[22]  O. Namy,et al.  Translational readthrough of the PDE2 stop codon modulates cAMP levels in Saccharomyces cerevisiae , 2002, Molecular microbiology.

[23]  D. Bedwell,et al.  Clinically relevant aminoglycosides can suppress disease-associated premature stop mutations in the IDUAand P53 cDNAs in a mammalian translation system , 2002, Journal of Molecular Medicine.

[24]  W. Tate,et al.  A dynamic competition between release factor 2 and the tRNASec decoding UGA at the recoding site of Escherichia coli formate dehydrogenase H , 2001, The EMBO journal.

[25]  S. Napthine,et al.  Ribosomal Pausing at a Frameshifter RNA Pseudoknot Is Sensitive to Reading Phase but Shows Little Correlation with Frameshift Efficiency , 2001, Molecular and Cellular Biology.

[26]  P. Rigby,et al.  Identification and characterisation of a developmentally regulated mammalian gene that utilises -1 programmed ribosomal frameshifting. , 2001, Nucleic acids research.

[27]  M. Tan,et al.  Programmed Translational Frameshifting Is Likely Required for Expressions of Genes Encoding Putative Nuclear Protein Kinases of the Ciliate Euplotes octocarinatus , 2001, The Journal of eukaryotic microbiology.

[28]  C. Samakovlis,et al.  A novel stop codon readthrough mechanism produces functional Headcase protein in Drosophila trachea , 2001, EMBO reports.

[29]  D Gani,et al.  Analysis of the aphthovirus 2A/2B polyprotein 'cleavage' mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal 'skip'. , 2001, The Journal of general virology.

[30]  I. Stansfield,et al.  Endless possibilities: translation termination and stop codon recognition. , 2001, Microbiology.

[31]  M. Tan,et al.  Analysis of Micronuclear, Macronuclear and cDNA Sequences Encoding the Regulatory Subunit of cAMP-Dependent Protein Kinase of Euplotes octocarinatus: Evidence for a Ribosomal Frameshift , 2001, The Journal of eukaryotic microbiology.

[32]  A. Shevchenko,et al.  Euplotes telomerase contains an La motif protein produced by apparent translational frameshifting , 2000, The EMBO journal.

[33]  D. Ransom,et al.  Expression and characterization of nonmammalian selenoprotein P in the zebrafish, Danio rerio , 2000, Genes to cells : devoted to molecular & cellular mechanisms.

[34]  H. True,et al.  A yeast prion provides a mechanism for genetic variation and phenotypic diversity , 2000, Nature.

[35]  Igor P. Ivanov,et al.  Antizyme expression: a subversion of triplet decoding, which is remarkably conserved by evolution, is a sensor for an autoregulatory circuit , 2000, Nucleic acids research.

[36]  K. Flanigan,et al.  Sequence specificity of aminoglycoside‐induced stop codon readthrough: Potential implications for treatment of Duchenne muscular dystrophy , 2000, Annals of neurology.

[37]  R. Gesteland,et al.  One protein from two open reading frames: mechanism of a 50 nt translational bypass , 2000, The EMBO journal.

[38]  J. F. Atkins,et al.  Nonlinearity in genetic decoding: homologous DNA replicase genes use alternatives of transcriptional slippage or translational frameshifting. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[39]  S. Peltz,et al.  Identification of putative programmed -1 ribosomal frameshift signals in large DNA databases. , 1999, Genome research.

[40]  John F. Atkins,et al.  Ribosomal −1 Frameshifting during Decoding ofBacillus subtilis cdd Occurs at the Sequence CGA AAG , 1999, Journal of bacteriology.

[41]  A. Böck,et al.  Dynamics and efficiency in vivo of UGA‐directed selenocysteine insertion at the ribosome , 1999, The EMBO journal.

[42]  M. Tuite,et al.  Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion‐mediated mechanism , 1999, The EMBO journal.

[43]  D. Rasko,et al.  Molecular genetic basis for the variable expression of Lewis Y antigen in Helicobacter pylori : analysis of the α(1,2) fucosyltransferase gene , 1999, Molecular microbiology.

[44]  C. Samakovlis,et al.  Translational readthrough in the hdc mRNA generates a novel branching inhibitor in the drosophila trachea. , 1998, Genes & development.

[45]  Y. Takai,et al.  Isolation and characterization of a novel actin filament-binding protein from Saccharomyces cerevisiae , 1998, Oncogene.

[46]  M. Berry,et al.  Ultraviolet-induced cell death blocked by a selenoprotein from a human dermatotropic poxvirus. , 1998, Science.

[47]  D. Morris,et al.  Programmed translational frameshifting in a gene required for yeast telomere replication , 1997, Current Biology.

[48]  M. Tuite,et al.  The non‐standard genetic code of Candida spp.: an evolving genetic code or a novel mechanism for adaptation? , 1997, Molecular microbiology.

[49]  M. Taketo,et al.  Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp). , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[50]  L. Cooley,et al.  Examination of the function of two kelch proteins generated by stop codon suppression. , 1997, Development.

[51]  K.,et al.  Regulatory autonomy and molecular characterization of the Drosophila out at first gene. , 1995, Genetics.

[52]  J. F. Atkins,et al.  Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme , 1995, Cell.

[53]  M Bjerknes,et al.  Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. , 1994, Nucleic acids research.

[54]  J. F. Atkins,et al.  rRNA-mRNA base pairing stimulates a programmed -1 ribosomal frameshift , 1994, Journal of bacteriology.

[55]  W. Tate,et al.  Competition between frameshifting, termination and suppression at the frameshift site in the Escherichia coli release factor-2 mRNA. , 1993, Nucleic acids research.

[56]  O. Fayet,et al.  Translational frameshifting in the control of transposition in bacteria , 1993, Molecular microbiology.

[57]  S. Matsufuji,et al.  Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination , 1992, Nature.

[58]  D. M. Ivey,et al.  A 1.6 kb region of Bacillus firmus OF4 DNA encodes a homolog of Escherichia coli and yeast DNA topoisomerases and may contain a translational readthrough of UGA. , 1992, Nucleic acids research.

[59]  R. Weiss,et al.  Recoding: reprogrammed genetic decoding. , 1992, Science.

[60]  P. G. Wilson,et al.  Sequence requirements for efficient translational frameshifting in the Escherichia coli dnaX gene and the role of an unstable interaction between tRNA(Lys) and an AAG lysine codon. , 1992, Genes & development.

[61]  A. Hasilik,et al.  UGA is translated as cysteine in pheromone 3 of Euplotes octocarinatus. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[62]  A. Flower,et al.  The gamma subunit of DNA polymerase III holoenzyme of Escherichia coli is produced by ribosomal frameshifting. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[63]  J. Walker,et al.  Programmed ribosomal frameshifting generates the Escherichia coli DNA polymerase III gamma subunit from within the tau subunit reading frame. , 1990, Nucleic acids research.

[64]  P. Manning,et al.  Genes for biosynthesis and assembly of CS3 pili of CFA/II enterotoxigenic Escherichia coli: novel regulation of pilus production by bypassing an amber codon , 1989, Molecular microbiology.

[65]  H. Varmus,et al.  Signals for ribosomal frameshifting in the rous sarcoma virus gag-pol region , 1988, Cell.

[66]  D. Dunn,et al.  Reading frame switch caused by base‐pair formation between the 3′ end of 16S rRNA and the mRNA during elongation of protein synthesis in Escherichia coli. , 1988, The EMBO journal.

[67]  W. Craigen,et al.  Expression of peptide chain release factor 2 requires high-efficiency frameshift , 1986, Nature.

[68]  A. T. Bankier,et al.  A different genetic code in human mitochondria , 1979, Nature.

[69]  J. F. Atkins,et al.  Overriding standard decoding: implications of recoding for ribosome function and enrichment of gene expression. , 2001, Cold Spring Harbor symposia on quantitative biology.

[70]  I. Brierley,et al.  Structure and function of the stimulatory RNAs involved in programmed eukaryotic-1 ribosomal frameshifting. , 2001, Cold Spring Harbor symposia on quantitative biology.

[71]  Peter W. J. Rigby,et al.  Shigemoto, K. et al. Identification and characterisation of a developmentally regulated mammalian gene that utilises -1 programmed ribosomal frameshifting. Nucleic Acids Res. 29, 4079-4088 , 2001 .

[72]  D. Sleat,et al.  Aminoglycoside-mediated suppression of nonsense mutations in late infantile neuronal ceroid lipofuscinosis. , 2001, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society.

[73]  P. Farabaugh,et al.  Programmed +1 translational frameshifting in the yeast Saccharomyces cerevisiae results from disruption of translational error correction. , 2001, Cold Spring Harbor symposia on quantitative biology.

[74]  J. Manch-Citron,et al.  The Translational Hop Junction and the 5′ Transcriptional Start Site for the Prevotella loescheii Adhesin Encoded by plaA , 1999, Current Microbiology.

[75]  J. F. Atkins,et al.  Recoding: dynamic reprogramming of translation. , 1996, Annual review of biochemistry.

[76]  R. Weiss,et al.  Slippery runs, shifty stops, backward steps, and forward hops: -2, -1, +1, +2, +5, and +6 ribosomal frameshifting. , 1987, Cold Spring Harbor symposia on quantitative biology.