Nanostructured materials for the construction of asymmetrical supercapacitors

Abstract Mechanically robust power devices of high energy efficiency are one of the keys towards overcoming the challenges from the daunting climate change and the depletion of fossil fuels on the earth. The importance of mechanical engineering has been long recognized in physical type power devices, but less so in those based on electrochemical processes, such as batteries, fuel cells, and electrochemical capacitors (ECs). Particularly, ECs, which are also known as supercapacitors, bridge the crucial performance disparity between fuel cells or batteries with high energy capacities and the traditional capacitors capable of outputting pulsed high power. New materials and advanced configurations are the two essential elements for ECs to cope with mechanical engineering issues at both macro and micro levels. This review describes the design and characteristics of ECs and the emerging asymmetrical construction utilizing nanostructured composites that enable energy storage through both ion adsorptions (interfacial capacitance) and fast and reversible redox reactions (pseudo-capacitance). It is specially intended to rouse interest towards newly reported high-energy and high-power aqueous ECs with nanocomposites of transition metal oxides, nitrides or conducting polymers, and carbon nanotubes or activated carbons. Current collector materials and structures are also examined as important mechanical engineering elements in ECs. The chemical, material, and mechanical issues reviewed here call for more joined efforts among scientists, engineers, and industries to further advance ECs as a promising new energy technology.

[1]  Ke‐long Huang,et al.  Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor , 2009 .

[2]  G. Chen,et al.  Individual and Bipolarly Stacked Asymmetrical Aqueous Supercapacitors of CNTs / SnO2 and CNTs / MnO2 Nanocomposites , 2009 .

[3]  Hao Zhang,et al.  Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries , 2009 .

[4]  Lili Zhang,et al.  Manganese oxide―carbon composite as supercapacitor electrode materials , 2009 .

[5]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[6]  Jiayan Luo,et al.  Hybrid Aqueous Energy Storage Cells Using Activated Carbon and Lithium-Ion Intercalated Compounds IV. Possibility of Using Polymer Gel Electrolyte , 2008 .

[7]  S. Donne,et al.  Chronoamperometric characterization of manganese dioxide discharge in alkaline electrolytes , 2008 .

[8]  G. Chen,et al.  Manganese oxide based materials for supercapacitors , 2008 .

[9]  G. Chen,et al.  Carbon nanotube and conducting polymer composites for supercapacitors , 2008 .

[10]  Y. Gogotsi,et al.  Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC , 2008 .

[11]  S. Donne,et al.  Characterization of solid electrode materials using chronoamperometry: A study of the alkaline γ-MnO2 electrode , 2008 .

[12]  Patrice Simon,et al.  New Materials and New Configurations for Advanced Electrochemical Capacitors , 2008 .

[13]  A. Burke R&D considerations for the performance and application of electrochemical capacitors , 2007 .

[14]  Hiroshi Inoue,et al.  Electrochemical Characterization of a Hybrid Capacitor with Zn and Activated Carbon Electrodes , 2007 .

[15]  S. Donne,et al.  Role of graphite in self-discharge of nickel(III) oxyhydroxide , 2007 .

[16]  Pierre-Louis Taberna,et al.  Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor , 2007 .

[17]  Wuzong Zhou,et al.  Nanoscale microelectrochemical cells on carbon nanotubes. , 2007, Small.

[18]  Hu-lin Li,et al.  Synthesis and characterization of Co(OH)2/TiO2 nanotube composites as supercapacitor materials , 2007 .

[19]  N. Munichandraiah,et al.  High capacitance properties of polyaniline by electrochemical deposition on a porous carbon substrate , 2007 .

[20]  N. Munichandraiah,et al.  Electrochemical Supercapacitor Studies of Nanostructured α-MnO2 Synthesized by Microemulsion Method and the Effect of Annealing , 2007 .

[21]  Jeffrey W Long,et al.  Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. , 2007, Nano letters.

[22]  W. Sugimoto,et al.  Charge storage mechanism of nanostructured anhydrous and hydrous ruthenium-based oxides , 2006 .

[23]  M. Fregonese,et al.  Study of oxygen reduction on stainless steel surfaces and its contribution to acoustic emission recorded during corrosion processes , 2006 .

[24]  J. Jang,et al.  Electrophoretic deposition (EPD) of hydrous ruthenium oxides with PTFE and their supercapacitor performances , 2006 .

[25]  Mathieu Toupin,et al.  Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors , 2006 .

[26]  Surjya K. Pal,et al.  Direct growth of aligned carbon nanotubes on bulk metals , 2006, Nature nanotechnology.

[27]  Yury Gogotsi,et al.  Effect of pore size and surface area of carbide derived carbons on specific capacitance , 2006 .

[28]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[29]  H. Inoue,et al.  Hybrid capacitor with activated carbon electrode, Ni(OH)2 electrode and polymer hydrogel electrolyte , 2006 .

[30]  Ying Wang,et al.  Nanostructured Vanadium Oxide Electrodes for Enhanced Lithium‐Ion Intercalation , 2006 .

[31]  Jong-Huy Kim,et al.  Synthesis of polypyrrole and carbon nano-fiber composite for the electrode of electrochemical capacitors , 2006 .

[32]  Norio Miura,et al.  High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline , 2006 .

[33]  Li-Zhen Fan,et al.  High-performance polypyrrole electrode materials for redox supercapacitors , 2006 .

[34]  Prashant N. Kumta,et al.  Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors , 2006 .

[35]  Pierre-Louis Taberna,et al.  Modification of Al Current Collector/Active Material Interface for Power Improvement of Electrochemical Capacitor Electrodes , 2006 .

[36]  Yongyao Xia,et al.  Electrochemical Capacitance Performance of Hybrid Supercapacitors Based on Ni ( OH ) 2 ∕ Carbon Nanotube Composites and Activated Carbon , 2006 .

[37]  Thierry Aubert,et al.  Activated carbon–carbon nanotube composite porous film for supercapacitor applications , 2006 .

[38]  F. Béguin,et al.  High-voltage asymmetric supercapacitors operating in aqueous electrolyte , 2006 .

[39]  D. Aurbach,et al.  Assessing optimal pore-to-ion size relations in the design of porous poly(vinylidene chloride) carbons for EDL capacitors , 2006 .

[40]  J. Jang,et al.  Hydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors , 2006 .

[41]  François Béguin,et al.  Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium , 2006 .

[42]  Yongyao Xia,et al.  Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution , 2006 .

[43]  Y. Park,et al.  Electrochemical capacitor with chemically polymerized conducting polymer based on activated carbon as hybrid electrodes , 2005 .

[44]  Pierre-Louis Taberna,et al.  High power density electrodes for Carbon supercapacitor applications , 2005 .

[45]  N. Munichandraiah,et al.  High Capacitance of Electrodeposited MnO2 by the Effect of a Surface-Active Agent , 2005 .

[46]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[47]  F. Béguin,et al.  Electrochemical energy storage in ordered porous carbon materials , 2005 .

[48]  Xiaogang Zhang,et al.  Enhanced Electrochemical Capacitance of NiO Loaded on TiO2 Nanotubes , 2005 .

[49]  D. Aurbach,et al.  On the mechanism of selective electroadsorption of protons in the pores of carbon molecular sieves. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[50]  M. Brett,et al.  Investigation of thin sputtered Mn films for electrochemical capacitors , 2004 .

[51]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[52]  Jianjun Niu,et al.  Comparative studies of self-discharge by potential decay and float-current measurements at C double-layer capacitor and battery electrodes , 2004 .

[53]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[54]  Mathieu Toupin,et al.  A Hybrid Activated Carbon-Manganese Dioxide Capacitor using a Mild Aqueous Electrolyte , 2004 .

[55]  C. R. Martin,et al.  Conical nanopore membranes. Preparation and transport properties. , 2004, Analytical chemistry.

[56]  E. Frąckowiak,et al.  Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites , 2004 .

[57]  Pierre-Louis Taberna,et al.  Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications , 2004 .

[58]  R. Reddy,et al.  Sol–gel MnO2 as an electrode material for electrochemical capacitors , 2003 .

[59]  W. Sugimoto,et al.  Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. , 2003, Angewandte Chemie.

[60]  O Ok Park,et al.  Carbon nanotube/RuO2 nanocomposite electrodes for supercapacitors , 2003 .

[61]  P. Simon,et al.  Activated Carbon/Conducting Polymer Hybrid Supercapacitors , 2003 .

[62]  P. Taberna,et al.  Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors , 2003 .

[63]  C. Amatore,et al.  Book Review: Encyclopedia of Electrochemistry Vol 9: Bioelectrochemistry. Editors A. J. Bard, G. S. Wilson and M. Stratmann , 2003 .

[64]  Guoqing Zhou,et al.  A study of activated carbon nanotubes as electrochemical super capacitors electrode materials , 2002 .

[65]  Arumugam Manthiram,et al.  Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes , 2002 .

[66]  R. Andrews,et al.  Multiwall carbon nanotubes: synthesis and application. , 2002, Accounts of Chemical Research.

[67]  Seok-Hyun Lee,et al.  Use of KCl Aqueous Electrolyte for 2 V Manganese Oxide/Activated Carbon Hybrid Capacitor , 2002 .

[68]  O. Park,et al.  Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes , 2002 .

[69]  Mathieu Toupin,et al.  Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide , 2002 .

[70]  Deyang Qu,et al.  Studies of the activated carbons used in double-layer supercapacitors , 2002 .

[71]  H. Kataoka,et al.  Carrier Migration Mechanism of Physically Cross-Linked Polymer Gel Electrolytes Based on PVDF Membranes , 2002 .

[72]  O. Park,et al.  Morphology and electrochemical behaviour of ruthenium oxide thin film deposited on carbon paper , 2002 .

[73]  Marina Mastragostino,et al.  Conducting polymers as electrode materials in supercapacitors , 2002 .

[74]  Alain Celzard,et al.  Porous electrodes-based double-layer supercapacitors: pore structure versus series resistance , 2002 .

[75]  K. Izutsu Electrochemistry in Nonaqueous Solutions , 2002 .

[76]  Hsisheng Teng,et al.  Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics , 2002 .

[77]  Alexis Laforgue,et al.  A Nonaqueous Asymmetric Hybrid Li4Ti5 O 12 / Poly(fluorophenylthiophene) Energy Storage Device , 2002 .

[78]  O. Park,et al.  An Electrochemical Capacitor Based on a Ni ( OH ) 2/Activated Carbon Composite Electrode , 2002 .

[79]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[80]  P. Simon,et al.  Hybrid Supercapacitors Based on Activated Carbons and Conducting Polymers , 2001 .

[81]  A. Garrouch,et al.  Using diffusion and electrical measurements to assess tortuosity of porous media , 2001 .

[82]  P. Simon,et al.  Chemical synthesis and characterization of fluorinated polyphenylthiophenes: application to energy storage , 2001 .

[83]  H. Kataoka,et al.  Investigation of the Conduction Mechanisms of Lithium Gel Polymer Electrolytes Based on Electrical Conductivity and Diffusion Coefficient Using NMR , 2001 .

[84]  Tao Zheng,et al.  An Asymmetric Hybrid Nonaqueous Energy Storage Cell , 2001 .

[85]  M. Mastragostino,et al.  Carbon-Poly(3-methylthiophene) Hybrid Supercapacitors , 2001 .

[86]  Karen Lozano,et al.  A study on nanofiber-reinforced thermoplastic composites (II): Investigation of the mixing rheology and conduction properties , 2001 .

[87]  H. Takenouti,et al.  Anodic behaviour of manganese in alkaline medium , 2001 .

[88]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[89]  W. Boehnstedt Aspects of optimizing polyethylene separators , 2001 .

[90]  S. W. Kim,et al.  Expansion of Active Site Area and Improvement of Kinetic Reversibility in Electrochemical Pseudocapacitor Electrode , 2001 .

[91]  K. Lozano,et al.  Nanofiber‐reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses , 2001 .

[92]  H. Kataoka,et al.  Conduction Mechanisms of PVDF-Type Gel Polymer Electrolytes of Lithium Prepared by a Phase Inversion Process , 2000 .

[93]  A. Burke Ultracapacitors: why, how, and where is the technology , 2000 .

[94]  Doron Aurbach,et al.  Carbon Electrodes for Double‐Layer Capacitors I. Relations Between Ion and Pore Dimensions , 2000 .

[95]  M. Chigane,et al.  Manganese Oxide Thin Film Preparation by Potentiostatic Electrolyses and Electrochromism , 2000 .

[96]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[97]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[98]  Milo S. P. Shaffer,et al.  Carbon Nanotube and Polypyrrole Composites: Coating and Doping , 2000 .

[99]  Hitoshi Yamamoto,et al.  Ionic Conduction Properties of PVDF−HFP Type Gel Polymer Electrolytes with Lithium Imide Salts , 2000 .

[100]  M. Anderson,et al.  Novel Electrode Materials for Thin‐Film Ultracapacitors: Comparison of Electrochemical Properties of Sol‐Gel‐Derived and Electrodeposited Manganese Dioxide , 2000 .

[101]  A. Zanelli,et al.  Polymer Selection and Cell Design for Electric‐Vehicle Supercapacitors , 2000 .

[102]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[103]  D. Bélanger,et al.  Physicochemical and Electrochemical Characterization of Polycyclopenta[2,1-b;3,4-b‘]dithiophen-4-one as an Active Electrode for Electrochemical Supercapacitors , 1999 .

[104]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[105]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[106]  K. Abraham,et al.  Discharge Rate Capability of the LiCoO2 Electrode , 1998 .

[107]  K. Vijayamohanan,et al.  Effect of silicate and phosphate additives on the kinetics of the oxygen evolution reaction in valve-regulated lead/acid batteries , 1998 .

[108]  Bruce Dunn,et al.  Deposition of Ruthenium Nanoparticles on Carbon Aerogels for High Energy Density Supercapacitor Electrodes , 1997 .

[109]  S. Donne,et al.  Redox Processes at the Manganese Dioxide Electrode I. Constant‐Current Intermittent Discharge , 1997 .

[110]  Jim P. Zheng,et al.  The Effect of Salt Concentration in Electrolytes on the Maximum Energy Storage for Double Layer Capacitors , 1997 .

[111]  J. Heinze,et al.  Electrochemical solution and solid-state investigations on conjugated oligomers and polymers of the α-thiophene and the p-phenylene series , 1996 .

[112]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[113]  Hang Shi,et al.  Activated carbons and double layer capacitance , 1996 .

[114]  Takeshi Morimoto,et al.  Electric double-layer capacitor using organic electrolyte , 1996 .

[115]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[116]  K. Abraham,et al.  Polymer Electrolytes Reinforced by Celgard® Membranes , 1995 .

[117]  W. A. Adams,et al.  Role of dissolution of Mn(iii) species in discharge and recharge of chemically-modified MnO2 battery cathode materials , 1993 .

[118]  Fujita,et al.  Electronic structure of graphene tubules based on C60. , 1992, Physical review. B, Condensed matter.

[119]  Sawada,et al.  New one-dimensional conductors: Graphitic microtubules. , 1992, Physical review letters.

[120]  White,et al.  Are fullerene tubules metallic? , 1992, Physical review letters.

[121]  H. Angerstein-Kozlowska,et al.  Surface oxidation and H deposition at ruthenium electrodes: Resolution of component processes in potential-sweep experiments , 1975 .

[122]  S. Trasatti,et al.  Ruthenium dioxide: a new electrode material. I. Behaviour in acid solutions of inert electrolytes , 1974 .

[123]  S. Trasatti,et al.  Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour , 1971 .

[124]  A. Kozawa,et al.  Solubilities of Mn(II) and Mn(III) Ions in Concentrated Alkaline Solutions , 1966 .

[125]  G. A. Muccini,et al.  Characteristics of porous beds and structures , 1956 .

[126]  J. Velisek,et al.  Studien über die Struktur von keramischen Diaphragmen mittels elektrischer Messungen , 1935 .

[127]  W. G. Armstrong The Meteor of November 6th , 1869, Nature.

[128]  Anbao Yuan,et al.  Textural and capacitive characteristics of MnO2 nanocrystals derived from a novel solid-reaction route , 2009 .

[129]  Derek J. Fray,et al.  Achieving high electrode specific capacitance with materials of low mass specific capacitance : Potentiostatically grown thick micro-nanoporous PEDOT films , 2007 .

[130]  K. Nam,et al.  Manganese Oxide Film Electrodes Prepared by Electrostatic Spray Deposition for Electrochemical Capacitors , 2006 .

[131]  E. Lust,et al.  Electrochemical Characteristics of Nanoporous Carbide-Derived Carbon Materials in Various Nonaqueous Electrolyte Solutions , 2006 .

[132]  Yong Jung Kim,et al.  Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons , 2004 .

[133]  A. M. Danishevskiǐ,et al.  A study of nanoporous carbon obtained from ZC powders (Z=Si, Ti, and B) , 2003 .

[134]  D. Bélanger,et al.  A Hybrid Fe3 O 4 ­ MnO2 Capacitor in Mild Aqueous Electrolyte , 2003 .

[135]  D. Bélanger,et al.  Electrochemical Characterization of Polyaniline in Nonaqueous Electrolyte and Its Evaluation as Electrode Material for Electrochemical Supercapacitors , 2001 .

[136]  P. Soudan,et al.  Synthesis, chemical polymerization and electrochemicalproperties of low band gap conducting polymers for use in supercapacitors , 2001 .

[137]  O. Chauvet,et al.  Synthesis of a new polyaniline/nanotube composite: “in-situ” polymerisation and charge transfer through site-selective interaction , 2001 .

[138]  Jim P. Zheng,et al.  Electrochemical Capacitors Using Hydrous Ruthenium Oxide and Hydrogen Inserted Ruthenium Oxide , 1998 .

[139]  K. Kordesch,et al.  Environmental Impact of Fuel Cell Technology , 1995 .

[140]  Shimshon Gottesfeld,et al.  Conducting polymers as active materials in electrochemical capacitors , 1994 .

[141]  I. Tanahashi,et al.  Effect of concentration of surface acidic functional groups on electric double-layer properties of activated carbon fibers , 1990 .

[142]  B. Conway,et al.  THE ELECTROCHEMICAL BEHAVIOR OF THE NICKEL – NICKEL OXIDE ELECTRODE: PART I. KINETICS OF SELF-DISCHARGE , 1959 .

[143]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .