Circuit and System Designs of Ultra-Low Power Sensor Nodes With Illustration in a Miniaturized GNSS Logger for Position Tracking: Part II—Data Communication, Energy Harvesting, Power Management, and Digital Circuits

This two-part paper reviews recent innovations in circuit design that have accelerated the miniaturization of sensor nodes. In this second part of the paper, we focus on key building blocks of miniaturized sensor nodes, such as data transceivers, energy harvesters, power management units, and digital logic circuits. System level design considerations are also discussed to provide guidelines for the design of a miniaturized system. As an example prototype design, a 2.7-cm3 global navigation satellite system (GNSS) logger is proposed. This paper includes a die-stacked sensor platform composed of an ARM cortex M0 processor, energy harvester, power management unit, solar cell, optical receiver, sensor layer, and RF transmitter that exploits the discussed design techniques for ultra-low power operation. The GNSS logger can store GNSS signals of >1 k positions on a single battery charging without additional energy harvesting.

[1]  James Murdock,et al.  5.9 A 24MHz crystal oscillator with robust fast start-up using dithered injection , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[2]  David Blaauw,et al.  A Fully-Integrated 71 nW CMOS Temperature Sensor for Low Power Wireless Sensor Nodes , 2014, IEEE Journal of Solid-State Circuits.

[3]  David Blaauw,et al.  A 380pW dual mode optical wake-up receiver with ambient noise cancellation , 2016, 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits).

[4]  David Blaauw,et al.  A millimeter-scale wireless imaging system with continuous motion detection and energy harvesting , 2014, 2014 Symposium on VLSI Circuits Digest of Technical Papers.

[5]  David Blaauw,et al.  Low power battery supervisory circuit with adaptive battery health monitor , 2014, 2014 Symposium on VLSI Circuits Digest of Technical Papers.

[6]  Johann W. Kolar,et al.  20.3 A feedforward controlled on-chip switched-capacitor voltage regulator delivering 10W in 32nm SOI CMOS , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[7]  Teresa H. Y. Meng,et al.  A mm-Sized Wirelessly Powered and Remotely Controlled Locomotive Implant , 2012, IEEE Transactions on Biomedical Circuits and Systems.

[8]  R. Collin,et al.  Evaluation of antenna Q , 1964 .

[9]  Mircea R. Stan Optimal voltages and sizing for low power [CMOS VLSI] , 1999, Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013).

[10]  David Blaauw,et al.  Circuit and System Designs of Ultra-Low Power Sensor Nodes With Illustration in a Miniaturized GNSS Logger for Position Tracking: Part I—Analog Circuit Techniques , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  David Blaauw,et al.  Reconfigurable sleep transistor for GIDL reduction in ultra-low standby power systems , 2012, Proceedings of the IEEE 2012 Custom Integrated Circuits Conference.

[12]  S. A Re-Examination of the Fundamental Limits on the Radiation Q of Electrically Small Antennas , 2008 .

[13]  Stephen T. Kim,et al.  A 0.45–1V fully integrated reconfigurable switched capacitor step-down DC-DC converter with high density MIM capacitor in 22nm tri-gate CMOS , 2013, 2013 Symposium on VLSI Circuits.

[14]  David Blaauw,et al.  A 1.6nJ/bit, 19.9μA peak current fully integrated 2.5mm2 inductive transceiver for volume-constrained microsystems , 2014, Proceedings of the IEEE 2014 Custom Integrated Circuits Conference.

[15]  David Blaauw,et al.  A 5.58 nW Crystal Oscillator Using Pulsed Driver for Real-Time Clocks , 2016, IEEE Journal of Solid-State Circuits.

[16]  A.P. Chandrakasan,et al.  A 175 mV multiply-accumulate unit using an adaptive supply voltage and body bias (ASB) architecture , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[17]  Heinrich Milosiu,et al.  A 3-µW 868-MHz wake-up receiver with −83 dBm sensitivity and scalable data rate , 2013, 2013 Proceedings of the ESSCIRC (ESSCIRC).

[18]  David Blaauw,et al.  Battery Voltage Supervisors for Miniature IoT Systems , 2016, IEEE Journal of Solid-State Circuits.

[19]  David Blaauw,et al.  8.5 A 60%-efficiency 20nW-500µW tri-output fully integrated power management unit with environmental adaptation and load-proportional biasing for IoT systems , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[20]  Arto Hujanen,et al.  Quality factor of an electrically small antenna radiating close to a conducting plane , 2001 .

[21]  W. Geyi Physical limitations of antenna , 2003 .

[22]  David Blaauw,et al.  A 695 pW standby power optical wake-up receiver for wireless sensor nodes , 2012, Proceedings of the IEEE 2012 Custom Integrated Circuits Conference.

[23]  Trevor Mudge,et al.  Combined dynamic voltage scaling and adaptive body biasing for lower power microprocessors under dynamic workloads , 2002, ICCAD 2002.

[24]  Anantha Chandrakasan,et al.  A Sub-nW 2.4 GHz Transmitter for Low Data-Rate Sensing Applications , 2014, IEEE Journal of Solid-State Circuits.

[25]  Yiannos Manoli,et al.  A 62 mV 0.13 $\mu$ m CMOS Standard-Cell-Based Design Technique Using Schmitt-Trigger Logic , 2011, IEEE Journal of Solid-State Circuits.

[26]  Keith A. Bowman,et al.  A minimum total power methodology for projecting limits on CMOS GSI , 2000, IEEE Trans. Very Large Scale Integr. Syst..

[27]  L. J. Chu Physical Limitations of Omni‐Directional Antennas , 1948 .

[28]  David Blaauw,et al.  A fully integrated successive-approximation switched-capacitor DC-DC converter with 31mV output voltage resolution , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[29]  David Blaauw,et al.  7.4 A 915MHz asymmetric radio using Q-enhanced amplifier for a fully integrated 3×3×3mm3 wireless sensor node with 20m non-line-of-sight communication , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[30]  David Blaauw,et al.  A Dual-Slope Capacitance-to-Digital Converter Integrated in an Implantable Pressure-Sensing System , 2014, IEEE Journal of Solid-State Circuits.

[31]  John Crossley,et al.  A sub-ns response fully integrated battery-connected switched-capacitor voltage regulator delivering 0.19W/mm2 at 73% efficiency , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[32]  S. Gambini,et al.  A 52 $\mu$ W Wake-Up Receiver With $-$ 72 dBm Sensitivity Using an Uncertain-IF Architecture , 2009, IEEE Journal of Solid-State Circuits.

[33]  Johann W. Kolar,et al.  4.7 A sub-ns response on-chip switched-capacitor DC-DC voltage regulator delivering 3.7W/mm2 at 90% efficiency using deep-trench capacitors in 32nm SOI CMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[34]  Anantha Chandrakasan,et al.  Optimal supply and threshold scaling for subthreshold CMOS circuits , 2002, Proceedings IEEE Computer Society Annual Symposium on VLSI. New Paradigms for VLSI Systems Design. ISVLSI 2002.

[35]  R. Hansen,et al.  Fundamental limitations in antennas , 1981, Proceedings of the IEEE.

[36]  David Blaauw,et al.  A Resonant Current-Mode Wireless Power Receiver and Battery Charger With −32 dBm Sensitivity for Implantable Systems , 2016, IEEE Journal of Solid-State Circuits.

[37]  David Blaauw,et al.  A Modular 1 mm$^{3}$ Die-Stacked Sensing Platform With Low Power I$^{2}$C Inter-Die Communication and Multi-Modal Energy Harvesting , 2013, IEEE Journal of Solid-State Circuits.

[38]  David Blaauw,et al.  Energy-Autonomous Wireless Communication for Millimeter-Scale Internet-of-Things Sensor Nodes , 2016, IEEE Journal on Selected Areas in Communications.

[39]  A. Chandrakasan,et al.  Energy extraction from the biologic battery in the inner ear , 2012, Nature Biotechnology.

[40]  Hoi-Jun Yoo,et al.  A 45μW injection-locked FSK Wake-Up receiver for crystal-less wireless body-area-network , 2012, 2012 IEEE Asian Solid State Circuits Conference (A-SSCC).

[41]  David Blaauw,et al.  Analysis and Optimization of Sleep Modes in Subthreshold Circuit Design , 2007, 2007 44th ACM/IEEE Design Automation Conference.

[42]  David Blaauw,et al.  21.4 A >78%-efficient light harvester over 100-to-100klux with reconfigurable PV-cell network and MPPT circuit , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[43]  A. Wang,et al.  Modeling and sizing for minimum energy operation in subthreshold circuits , 2005, IEEE Journal of Solid-State Circuits.

[44]  Jan M. Rabaey,et al.  A Fully Integrated, 290 pJ/bit UWB Dual-Mode Transceiver for cm-Range Wireless Interconnects , 2012, IEEE Journal of Solid-State Circuits.

[45]  David Blaauw,et al.  A 10 mm3 Inductive Coupling Radio for Syringe-Implantable Smart Sensor Nodes , 2016, IEEE Journal of Solid-State Circuits.

[46]  J. Kolar,et al.  A Feedforward Controlled On-Chip Switched-Capacitor Voltage Regulator Delivering 10 W in 32 nm SOI CMOS , 2015 .

[47]  David Blaauw,et al.  Theoretical and practical limits of dynamic voltage scaling , 2004, Proceedings. 41st Design Automation Conference, 2004..

[48]  S. Dasgupta,et al.  Device and Circuit Co-Design Robustness Studies in the Subthreshold Logic for Ultralow-Power Applications for 32 nm CMOS , 2010, IEEE Transactions on Electron Devices.

[49]  Guido Dolmans,et al.  A 915MHz ultra-low power wake-up receiver with scalable performance and power consumption , 2011, 2011 Proceedings of the ESSCIRC (ESSCIRC).

[50]  Anantha Chandrakasan,et al.  A 350μW CMOS MSK transmitter and 400μW OOK super-regenerative receiver for Medical Implant Communications , 2009, 2008 IEEE Symposium on VLSI Circuits.

[51]  David Blaauw,et al.  Ultralow Power Circuit Design for Wireless Sensor Nodes for Structural Health Monitoring , 2016, Proceedings of the IEEE.

[52]  M. Steyaert,et al.  A 1.65W fully integrated 90nm Bulk CMOS Intrinsic Charge Recycling capacitive DC-DC converter: Design & techniques for high power density , 2011, 2011 IEEE Energy Conversion Congress and Exposition.

[53]  W. Stutzman,et al.  Fundamental limits on antenna size: a new limit , 2011 .

[54]  Anantha Chandrakasan,et al.  A 93% efficiency reconfigurable switched-capacitor DC-DC converter using on-chip ferroelectric capacitors , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[55]  David Blaauw,et al.  8.2 Batteryless Sub-nW Cortex-M0+ processor with dynamic leakage-suppression logic , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[56]  Loai G. Salem,et al.  4.6 An 85%-efficiency fully integrated 15-ratio recursive switched-capacitor DC-DC converter with 0.1-to-2.2V output voltage range , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[57]  David Blaauw,et al.  A Sub-nW Multi-stage Temperature Compensated Timer for Ultra-Low-Power Sensor Nodes , 2013, IEEE Journal of Solid-State Circuits.

[58]  David Blaauw,et al.  A 635pW battery voltage supervisory circuit for miniature sensor nodes , 2012, 2012 Symposium on VLSI Circuits (VLSIC).

[59]  B. M. Gordon,et al.  Supply and threshold voltage scaling for low power CMOS , 1997, IEEE J. Solid State Circuits.

[60]  Yao-Hong Liu Energy-Efficient Phase-Domain RF Receivers for Internet-of-Things (IOT) Applications , 2016 .

[61]  David Blaauw,et al.  Near-Threshold Computing: Reclaiming Moore's Law Through Energy Efficient Integrated Circuits , 2010, Proceedings of the IEEE.