H∞-filtering for Markov jump linear systems with partial information on the jump parameter

Abstract We study in this work the H ∞ -filtering problem in a partial information context. We suppose that the state of the Markov chain θ(k) is not available to the filter, but only an estimation coming from a detector and represented by θ ^ ( k ) . We present two main results related to the synthesis of filters that depend only on θ ^ ( k ) such that the H ∞ norm in relation to the estimation error is limited: the case in which the transition and detection probabilities are not exactly known, but belong to distinct convex sets; and the Bernoulli case in which we derive necessary and sufficient conditions for the filter synthesis. All the results are given in terms of linear matrix inequalities and are illustrated by two numerical examples of systems prone to faults.

[1]  Alim P. C. Gonçalves,et al.  Optimal and mode-independent filters for generalised Bernoulli jump systems , 2015, Int. J. Syst. Sci..

[2]  José Claudio Geromel,et al.  Optimal H2 state feedback sampled-data control design of Markov Jump Linear Systems , 2015, Autom..

[3]  Alim P. C. Gonçalves,et al.  Markov jump linear systems and filtering through network transmitted measurements , 2010, Signal Process..

[4]  J.C. Geromel,et al.  ${\cal H}_{\infty}$ Filtering of Discrete-Time Markov Jump Linear Systems Through Linear Matrix Inequalities , 2009, IEEE Transactions on Automatic Control.

[5]  M.H. Terra,et al.  A Fault-Tolerant Manipulator Robot Based on ${{\cal H}}_2$, ${{\cal H}}_{\infty }$, and Mixed ${{\cal H}}_2/{{\cal H}}_{\infty }$ Markovian Controls , 2009, IEEE/ASME Transactions on Mechatronics.

[6]  Alim P. C. Gonçalves,et al.  The H2-control for jump linear systems: cluster observations of the Markov state , 2002, Autom..

[7]  André Marcorin de Oliveira,et al.  -Filtering for discrete-time hidden Markov jump systems , 2017, Int. J. Control.

[8]  Marcelo D. Fragoso,et al.  A Bounded Real Lemma for continuous-time linear systems with partial information on the Markovian jumping parameters , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[9]  O. Costa Linear minimum mean square error estimation for discrete-time Markovian jump linear systems , 1994, IEEE Trans. Autom. Control..

[10]  Guillaume Ducard,et al.  Fault-tolerant Flight Control and Guidance Systems , 2009 .

[11]  J. Geromel,et al.  A new discrete-time robust stability condition , 1999 .

[12]  Alim P. C. Gonçalves,et al.  ℋ 2 filtering of discrete-time Markov jump linear systems through linear matrix inequalities , 2008, Int. J. Control.

[13]  O. L. V. Costa,et al.  ℋ∞-filtering design for discrete-time Markov Jump Systems with hidden parameters , 2016, 2016 IEEE Conference on Control Applications (CCA).

[14]  Dominique Sauter,et al.  Output feedback robust control of uncertain active fault tolerant control systems via convex analysis , 2008, Int. J. Control.

[15]  Marcelo D. Fragoso,et al.  A Detector-Based Approach for the $H_{2} $ Control of Markov Jump Linear Systems With Partial Information , 2015, IEEE Transactions on Automatic Control.

[16]  Inseok Hwang,et al.  A Survey of Fault Detection, Isolation, and Reconfiguration Methods , 2010, IEEE Transactions on Control Systems Technology.

[17]  Marcelo D. Fragoso,et al.  A new approach for the H∞ control of Markov jump linear systems with partial information , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[18]  Alim P. C. Gonçalves,et al.  Dynamic Output Feedback Control of Discrete-Time Markov Jump Linear Systems through Linear Matrix Inequalities , 2009, SIAM J. Control. Optim..

[19]  Marcelo D. Fragoso,et al.  H∞ filtering for markovian jump linear systems with mode partial information , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[20]  Raja Sengupta,et al.  A bounded real lemma for jump systems , 2003, IEEE Trans. Autom. Control..

[21]  Alexandre Trofino,et al.  Mode-Independent ${\cal H}_{\infty}$ Filters for Markovian Jump Linear Systems , 2006, IEEE Transactions on Automatic Control.

[22]  Oswaldo Luiz V. Costa,et al.  H2-Control and the Separation Principle for Discrete-Time Markovian Jump Linear Systems , 2004, Math. Control. Signals Syst..

[23]  Marco Henrique Terra,et al.  A Fault-Tolerant Manipulator Robot Based on H2 , H∞, and Mixed H2/H∞ Markovian Controls , 2009 .

[24]  O. L. V. Costa,et al.  $H_2$-Control of Continuous-Time Hidden Markov Jump Linear Systems , 2017, IEEE Transactions on Automatic Control.

[25]  Marco H. Terra,et al.  Fault-tolerant robot manipulators based on output-feedback Hinfinity controllers , 2007, Robotics Auton. Syst..

[26]  João Pedro Hespanha,et al.  A Survey of Recent Results in Networked Control Systems , 2007, Proceedings of the IEEE.