Skeletonization of Volumetric Angiograms for Display

The display of three-dimensional angiograms can benefit from the knowledge of quantitative shape features such as tangent and curvature of the centerline of vessels. These can be obtained from a curve-like skeleton representation. If connectivity and topology are preserved, and if geometrical constraints such as smoothness and centeredness are satisfied, it is possible to estimate length, orientation, curvature, and torsion. It is also required that no part of the original object be left unrepresented. An efficient method for the identification of such shape components is developed. First, a suitable representation is obtained using a voxel coding approach to yield connected and labeled unit-thick paths. The desired features are estimated from a smoothed version of the skeleton produced by a moving average filter. The computational cost is linear, of the order of Nobject, the total number of object voxels contained in the binary volumetric data. The method is also shown to be robust to boundary noise. Examples are discussed.

[1]  H. Blum Biological shape and visual science (part I) , 1973 .

[2]  G. Borgefors Distance transformations in arbitrary dimensions , 1984 .

[3]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[4]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[5]  V. Ralph Algazi,et al.  Continuous skeleton computation by Voronoi diagram , 1991, CVGIP Image Underst..

[6]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[7]  Frederic Fol Leymarie,et al.  Simulating the Grassfire Transform Using an Active Contour Model , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Claude Brezinski,et al.  Numerical recipes in Fortran (The art of scientific computing) : W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Cambridge Univ. Press, Cambridge, 2nd ed., 1992. 963 pp., US$49.95, ISBN 0-521-43064-X.☆ , 1993 .

[9]  Rangasami L. Kashyap,et al.  Building Skeleton Models via 3-D Medial Surface/Axis Thinning Algorithms , 1994, CVGIP Graph. Model. Image Process..

[10]  Gilles Bertrand,et al.  A new characterization of three-dimensional simple points , 1994, Pattern Recognition Letters.

[11]  Isabelle Debled-Rennesson,et al.  A Linear Algorithm for Segmentation of Digital Curves , 1995, Int. J. Pattern Recognit. Artif. Intell..

[12]  Olaf Kübler,et al.  Hierarchic Voronoi skeletons , 1995, Pattern Recognit..

[13]  Gilles Bertrand,et al.  A parallel thinning algorithm for medial surfaces , 1995, Pattern Recognit. Lett..

[14]  Jiri Matas,et al.  Estimation of Curvature and Tangent Direction by Median Filtered Differencing , 1995, ICIAP.

[15]  Gilles Bertrand,et al.  A Boolean characterization of three-dimensional simple points , 1996, Pattern Recognition Letters.

[16]  Paul Milgram,et al.  Perceptual issues in augmented reality , 1996, Electronic Imaging.

[17]  Terry M. Peters,et al.  Optimal display conditions for quantitative analysis of stereoscopic cerebral angiograms , 1996, IEEE Trans. Medical Imaging.

[18]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[19]  An interactive cerebral blood vessel exploration system , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[20]  Ingela Nyström Skeletonization applied to magnetic resonance angiography images , 1998, Medical Imaging.

[21]  Grégoire Malandain,et al.  Euclidean skeletons , 1998, Image Vis. Comput..

[22]  Arthur W. Toga,et al.  Efficient Skeletonization of Volumetric Objects , 1999, IEEE Trans. Vis. Comput. Graph..

[23]  Laure Tougne,et al.  Optimal Time Computation of the Tangent of a Discrete Curve: Application to the Curvature , 1999, DGCI.

[24]  Nicholas Ayache,et al.  Model-Based Detection of Tubular Structures in 3D Images , 2000, Comput. Vis. Image Underst..

[25]  Vincent Hayward,et al.  Discrete-time adaptive windowing for velocity estimation , 2000, IEEE Trans. Control. Syst. Technol..

[26]  Kaleem Siddiqi,et al.  Divergence-Based Medial Surfaces , 2000, ECCV.

[27]  Heidar A. Malki,et al.  Control Systems Technology , 2001 .