Improved wavelet decoding via set theoretic estimation

In this letter, we show that the performance of a wavelet decoder can be improved via a set theoretic approach at low bit rates. The traditional decoding rule is replaced by iterative projection-onto-convex-set (POCS) operations to exploit a priori information about the quantization and geometric constraints of the image source. Experimental results have shown that the proposed set theoretic estimation based scheme is capable of improving both the subjective and the objective performance of wavelet decoders.

[1]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[2]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  G. Sapiro,et al.  Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.

[4]  Nikolas P. Galatsanos,et al.  Projection-based spatially adaptive reconstruction of block-transform compressed images , 1995, IEEE Trans. Image Process..

[5]  Wenyuan Xu,et al.  Behavioral analysis of anisotropic diffusion in image processing , 1996, IEEE Trans. Image Process..

[6]  Martin Vetterli,et al.  Set theoretic compression with an application to image coding , 1994, Proceedings of 1st International Conference on Image Processing.

[7]  Aria Nosratinia Postprocessing of JPEG-2000 images to remove compression artifacts , 2003, IEEE Signal Processing Letters.

[8]  Xin Li On exploiting geometric constraint of image wavelet coefficients , 2003, IEEE Trans. Image Process..

[9]  M. Vetterli,et al.  Rate-Distortion Optimized Tree-Structured Compression Algorithms for Piecewise , 2005 .

[10]  P. L. Combettes The foundations of set theoretic estimation , 1993 .

[11]  William A. Pearlman,et al.  A new, fast, and efficient image codec based on set partitioning in hierarchical trees , 1996, IEEE Trans. Circuits Syst. Video Technol..

[12]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.

[13]  Truong Q. Nguyen,et al.  Maximum-likelihood parameter estimation for image ringing-artifact removal , 2001, IEEE Trans. Circuits Syst. Video Technol..

[14]  Jerome M. Shapiro,et al.  Embedded image coding using zerotrees of wavelet coefficients , 1993, IEEE Trans. Signal Process..

[15]  Gary E. Ford,et al.  Mean curvature evolution and surface area scaling in image filtering , 1997, IEEE Trans. Image Process..

[16]  Guoliang Fan,et al.  Postprocessing of low bit-rate wavelet-based image coding using multiscale edge characterization , 2001, IEEE Trans. Circuits Syst. Video Technol..

[17]  Christian Chatellier,et al.  A PDE-based method for ringing artifact removal on grayscale and color JPEG2000 images , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[18]  S. Mallat A wavelet tour of signal processing , 1998 .

[19]  Erwan Le Pennec,et al.  Bandelet representations for image compression , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[20]  David S. Taubman,et al.  High performance scalable image compression with EBCOT , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).