On the Use of Blowup to Study Regularizations of Singularities of Piecewise Smooth Dynamical Systems in ℝ3
暂无分享,去创建一个
[1] Aleksej F. Filippov,et al. Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.
[2] S. John Hogan,et al. Canards in piecewise-linear systems: explosions and super-explosions , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[3] Jaume Llibre,et al. Regularization Of Discontinuous Vector Fields In Dimension Three , 1997 .
[4] V. Utkin. Variable structure systems with sliding modes , 1977 .
[5] O. Makarenkov,et al. Preface: Dynamics and Bifurcations of Nonsmooth Systems , 2012 .
[6] Xavier Jarque,et al. A Survey on the blow up Technique , 2011, Int. J. Bifurc. Chaos.
[7] J. Callot,et al. Chasse au canard , 1977 .
[8] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[9] Marco Antonio Teixeira,et al. Generic Bifurcation of Sliding Vector Fields , 1993 .
[10] Neil Fenichel. Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .
[11] M. Krupa,et al. Local analysis near a folded saddle-node singularity , 2010 .
[12] Christian Kuehn,et al. Multiscale Geometry of the Olsen Model and Non-classical Relaxation Oscillations , 2014, J. Nonlinear Sci..
[13] Freddy Dumortier,et al. Techniques in the Theory of Local Bifurcations: Blow-Up, Normal Forms, Nilpotent Bifurcations, Singular Perturbations , 1993 .
[14] Christopher Jones,et al. Geometric singular perturbation theory , 1995 .
[15] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[16] P. Szmolyan,et al. Canards in R3 , 2001 .
[17] Peter Szmolyan,et al. Extending Geometric Singular Perturbation Theory to Nonhyperbolic Points - Fold and Canard Points in Two Dimensions , 2001, SIAM J. Math. Anal..
[18] Martin Krupa,et al. Mixed Mode Oscillations due to the Generalized Canard Phenomenon , 2006 .
[19] Martin Wechselberger,et al. Existence and Bifurcation of Canards in ℝ3 in the Case of a Folded Node , 2005, SIAM J. Appl. Dyn. Syst..
[20] Neil Fenichel. Geometric singular perturbation theory for ordinary differential equations , 1979 .
[21] Peter Szmolyan,et al. Extending slow manifolds near transcritical and pitchfork singularities , 2001 .
[22] S. McNamara. Rigid and Quasi-Rigid Theories of Granular Media , 2007 .
[23] F. Dumortier,et al. Local Study of Planar Vector Fields: Singularities and Their Unfoldings , 1991 .
[24] Mathieu Desroches,et al. Canards and curvature: nonsmooth approximation by pinching , 2011, 1204.4036.
[25] Freddy Dumortier,et al. Canard Cycles and Center Manifolds , 1996 .
[26] D Michelson,et al. Steady solutions of the Kuramoto-Sivashinsky equation , 1986 .
[27] Antonio E. Teruel,et al. Canard trajectories in 3D piecewise linear systems , 2013 .
[28] Karl Schweizerhof,et al. FE-regularization of non-smooth vibrations due to friction and impacts , 2002 .
[29] Stephen John Hogan,et al. The Geometry of Generic Sliding Bifurcations , 2011, SIAM Rev..
[30] A. V. Pukhlikov,et al. Discontinuous Dynamical Systems in Optimal Control Theory , 2002 .
[31] Peter Szmolyan,et al. Scaling in Singular Perturbation Problems: Blowing Up a Relaxation Oscillator , 2011, SIAM J. Appl. Dyn. Syst..
[32] Regularization of 2D Frictional Contacts for Rigid Body Dynamics , 2006 .
[33] T. M. Seara,et al. Regularization of sliding global bifurcations derived from the local fold singularity of Filippov systems , 2014, 1402.5237.