3D Parallel Elastodynamic Modeling of Large Subduction Earthquakes

The 3D finite difference modeling of the wave propagation of M>8 earthquakes in subduction zones in a realistic-size earth is very computationally intensive task. We use a parallel finite difference code that uses second order operators in time and fourth order differences in space on a staggered grid. We develop an efficient parallel program using message passing interface (MPI) and a kinematic earthquake rupture process. We achieve an efficiency of 94% with 128 (and 85% extrapolating to 1,024) processors on a dual core platform. Satisfactory results for a large subduction earthquake that occurred in Mexico in 1985 are given.