Degree of intervality of food webs: from body-size data to models.

In food webs, the degree of intervality of consumers' diets is an indicator of the number of dimensions that are necessary to determine the niche of a species. Previous studies modeling food-web structure have shown that real networks are compatible with a high degree of diet contiguity. However, current models are also compatible with the opposite, namely that species' diets have relatively low contiguity. This is particularly true when one takes species' body size as a proxy for niche value, in which case the indeterminacy of diet contiguities provided by current models can be large. We propose a model that enables us to narrow down the range of possible values of diet contiguity. According to this model, we find that diet contiguity not only can be high, but must be high when species are ranked in ascending order of body size.

[1]  Marta Sales-Pardo,et al.  Evolutionary Conservation of Species’ Roles in Food Webs , 2012, Science.

[2]  José A Capitán,et al.  Species assembly in model ecosystems, II: Results of the assembly process. , 2010, Journal of theoretical biology.

[3]  Nicolas Loeuille,et al.  Evolutionary emergence of size-structured food webs. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Daniel C Reuman,et al.  Food webs are more than the sum of their tritrophic parts , 2009, Proceedings of the National Academy of Sciences.

[5]  J. Bascompte,et al.  Compartmentalization increases food-web persistence , 2011, Proceedings of the National Academy of Sciences.

[6]  H. Akaike A new look at the statistical model identification , 1974 .

[7]  L. Amaral,et al.  The role of body mass in diet contiguity and food-web structure. , 2011, The Journal of animal ecology.

[8]  Luís A. Nunes Amaral,et al.  Ecological engineering and sustainability: A new opportunity for chemical engineering , 2008 .

[9]  J. E. Cohen,et al.  Food webs and the dimensionality of trophic niche space. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Luís A. Nunes Amaral,et al.  Evidence for the existence of a robust pattern of prey selection in food webs , 2007, Proceedings of the Royal Society B: Biological Sciences.

[11]  Daniel B. Stouffer,et al.  Origin of compartmentalization in food webs. , 2010, Ecology.

[12]  M. Pascual,et al.  Ecological networks : Linking structure to dynamics in food webs , 2006 .

[13]  Jordi Bascompte,et al.  SIMPLE TROPHIC MODULES FOR COMPLEX FOOD WEBS , 2005 .

[14]  L. Amaral,et al.  Quantitative analysis of the local structure of food webs. , 2007, Journal of theoretical biology.

[15]  Neo D. Martinez,et al.  Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural food web , 2000 .

[16]  Guy Woodward,et al.  Body size in ecological networks. , 2005, Trends in ecology & evolution.

[17]  J H Lawton,et al.  Static and dynamic explanations for patterns in food webs. , 1988, Trends in ecology & evolution.

[18]  S. Jennings,et al.  Linking size-based and trophic analyses of benthic community structure , 2002 .

[19]  Neo D. Martinez,et al.  Limits to Trophic Levels and Omnivory in Complex Food Webs: Theory and Data , 2004, The American Naturalist.

[20]  Robert F Costantino,et al.  Power spectra reveal the influence of stochasticity on nonlinear population dynamics , 2006, Proceedings of the National Academy of Sciences.

[21]  L. Amaral,et al.  A robust measure of food web intervality , 2006, Proceedings of the National Academy of Sciences.

[22]  P. Yodzis,et al.  Local trophodynamics and the interaction of marine mammals and fisheries in the Benguela ecosystem , 1998 .

[23]  Stefano Allesina,et al.  Food webs: ordering species according to body size yields high degree of intervality. , 2011, Journal of theoretical biology.

[24]  Stefano Allesina,et al.  The dimensionality of ecological networks. , 2013, Ecology letters.

[25]  Jean-Pierre Gabriel,et al.  Phylogenetic constraints and adaptation explain food-web structure , 2004, Nature.

[26]  Neo D. Martinez,et al.  Food-web structure and network theory: The role of connectance and size , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Joel E. Cohen,et al.  Community Food Webs: Data and Theory , 1990 .

[28]  Owen L Petchey,et al.  Size, foraging, and food web structure , 2008, Proceedings of the National Academy of Sciences.

[29]  R. Guimerà,et al.  QUANTITATIVE PATTERNS IN THE STRUCTURE OF MODEL AND EMPIRICAL FOOD WEBS , 2004, q-bio/0401023.

[30]  Stefano Allesina,et al.  A General Model for Food Web Structure , 2008, Science.

[31]  U. Dieckmann,et al.  Food-web structure in low- and high-dimensional trophic niche spaces , 2010, Journal of The Royal Society Interface.

[32]  E. Hill Journal of Theoretical Biology , 1961, Nature.

[33]  G. Polis,et al.  Complex Trophic Interactions in Deserts: An Empirical Critique of Food-Web Theory , 1991, The American Naturalist.

[34]  J. C. de Almeida,et al.  Concluding Remarks , 2015, Clinical practice and epidemiology in mental health : CP & EMH.

[35]  A. Solow,et al.  ON LUMPING SPECIES IN FOOD WEBS , 1998 .

[36]  A. Dobson,et al.  Parasites dominate food web links. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[37]  References , 1971 .

[38]  Charles M. Newman,et al.  Community Food Webs , 1990 .

[39]  B. Kendall,et al.  WHY DO POPULATIONS CYCLE? A SYNTHESIS OF STATISTICAL AND MECHANISTIC MODELING APPROACHES , 1999 .

[40]  Neo D. Martinez,et al.  Simple rules yield complex food webs , 2000, Nature.

[41]  José A Capitán,et al.  Species assembly in model ecosystems, I: Analysis of the population model and the invasion dynamics. , 2010, Journal of theoretical biology.

[42]  S. Hall,et al.  Food-web patterns : lessons from a species-rich web , 1991 .

[43]  Stephen H. Levine,et al.  Several measures of trophic structure applicable to complex food webs , 1980 .

[44]  Jordi Bascompte,et al.  Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. , 2009, Ecology letters.

[45]  Werner Ulrich,et al.  Consumer-resource body-size relationships in natural food webs. , 2006, Ecology.

[46]  J. Capitán,et al.  Catastrophic regime shifts in model ecological communities are true phase transitions , 2010, 1008.0335.

[47]  R. Harrington,et al.  Predators, parasitoids and pathogens. , 2007 .

[48]  José A Capitán,et al.  Statistical mechanics of ecosystem assembly. , 2009, Physical review letters.

[49]  H. Dawah,et al.  Structure of the parasitoid communities of grass-feeding chalcid wasps , 1995 .

[50]  Roger Guimerà,et al.  Robust patterns in food web structure. , 2001, Physical review letters.

[51]  Philip H. Warren,et al.  Spatial and temporal variation in the structure of a freshwater food web , 1989 .

[52]  S. Opitz,et al.  Trophic interactions in Caribbean coral reefs , 1996 .

[53]  Thomas W. Schoener,et al.  Food Webs From the Small to the Large: The Robert H. MacArthur Award Lecture , 1989 .

[54]  Neo D. Martinez,et al.  Network structure and biodiversity loss in food webs: robustness increases with connectance , 2002, Ecology Letters.

[55]  Richard Law,et al.  Effects of dynamics on ecological networks. , 2007, Journal of theoretical biology.

[56]  Werner Ulrich,et al.  BODY SIZES OF CONSUMERS AND THEIR RESOURCES , 2005 .

[57]  A. Arenas,et al.  Food-web topology: Universal scaling in food-web structure? , 2005, Nature.

[58]  Neo D. Martinez Artifacts or Attributes? Effects of Resolution on the Little Rock Lake Food Web , 1991 .

[59]  Joel E. Cohen,et al.  A Stochastic Theory of Community Food Webs , 1990 .

[60]  Neo D. Martinez,et al.  Communicating Ecology through Food Webs: Visualizing and Quantifying the Effects of Stocking Alpine Lakes with Trout , 2005 .

[61]  Peter C. de Ruiter,et al.  DYNAMIC FOOD WEBS , 2006 .

[62]  Charles M. Newman,et al.  A stochastic theory of community food webs I. Models and aggregated data , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[63]  Jordi Bascompte,et al.  Interaction strength combinations and the overfishing of a marine food web. , 2005, Proceedings of the National Academy of Sciences of the United States of America.