Biology of advanced uveal melanoma and next steps for clinical therapeutics

Uveal melanoma is the most common intraocular malignancy although it is a rare subset of all melanomas. Uveal melanoma has distinct biology relative to cutaneous melanoma, with widely divergent patient outcomes. Patients diagnosed with a primary uveal melanoma can be stratified for risk of metastasis by cytogenetics or gene expression profiling, with approximately half of patients developing metastatic disease, predominately hepatic in location, over a 15‐yr period. Historically, no systemic therapy has been associated with a clear clinical benefit for patients with advanced disease, and median survival remains poor. Here, as a joint effort between the Melanoma Research Foundation's ocular melanoma initiative, CURE OM and the National Cancer Institute, the current understanding of the molecular and immunobiology of uveal melanoma is reviewed, and on‐going laboratory research into the disease is highlighted. Finally, recent investigations relevant to clinical management via targeted and immunotherpies are reviewed, and next steps in the development of clinical therapeutics are discussed.

[1]  A. Gibson The European Society for Medical Oncology (ESMO) , 2019, Annals of Oncology.

[2]  C. Emery,et al.  Combined PKC and MEK inhibition in uveal melanoma with GNAQ and GNA11 mutations , 2014, Oncogene.

[3]  G. Merlino,et al.  Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. , 2014, Cancer cell.

[4]  R. Tubbs,et al.  Circulating immune cell and microRNA in patients with uveal melanoma developing metastatic disease. , 2014, Molecular immunology.

[5]  A. Hauschild,et al.  Surrogate endpoints for overall survival in metastatic melanoma: a meta-analysis of randomised controlled trials. , 2014, The Lancet. Oncology.

[6]  G. Schwartz,et al.  The Phosphoinositide 3-Kinase α Selective Inhibitor BYL719 Enhances the Effect of the Protein Kinase C Inhibitor AEB071 in GNAQ/GNA11-Mutant Uveal Melanoma Cells , 2014, Molecular Cancer Therapeutics.

[7]  B. Bastian The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. , 2014, Annual review of pathology.

[8]  A. Bowcock,et al.  Combined PKC and MEK inhibition for treating metastatic uveal melanoma , 2014, Oncogene.

[9]  P. Ott,et al.  Kinase inhibitors and immune check-point blockade for the treatment of metastatic melanoma and advanced cancer: synergistic or antagonistic? , 2013, Expert opinion on pharmacotherapy.

[10]  K. Schäkel,et al.  Low-dose irradiation programs macrophage differentiation to an iNOS⁺/M1 phenotype that orchestrates effective T cell immunotherapy. , 2013, Cancer cell.

[11]  P. Ascierto,et al.  Efficacy and safety of ipilimumab in patients with pre-treated, uveal melanoma. , 2013, Annals of oncology : official journal of the European Society for Medical Oncology.

[12]  Gary K. Schwartz,et al.  Crizotinib, a c-Met Inhibitor, Prevents Metastasis in a Metastatic Uveal Melanoma Model , 2013, Molecular Cancer Therapeutics.

[13]  A. Giobbie-Hurder,et al.  Clinical activity of ipilimumab for metastatic uveal melanoma , 2013, Cancer.

[14]  C. Blank,et al.  Ipilimumab in pretreated metastastic uveal melanoma patients. Results of the Dutch Working group on Immunotherapy of Oncology (WIN-O) , 2013, Acta oncologica.

[15]  David Gentien,et al.  SF3B1 mutations are associated with alternative splicing in uveal melanoma. , 2013, Cancer discovery.

[16]  A. Bowcock,et al.  BAP1 deficiency causes loss of melanocytic cell identity in uveal melanoma , 2013, BMC Cancer.

[17]  J. Burnier,et al.  Vascular endothelial growth factor expression and inhibition in uveal melanoma cell lines , 2013, ecancermedicalscience.

[18]  C. Horak,et al.  Nivolumab plus ipilimumab in advanced melanoma. , 2013, The New England journal of medicine.

[19]  D. Schadendorf,et al.  Selumetinib plus dacarbazine versus placebo plus dacarbazine as first-line treatment for BRAF-mutant metastatic melanoma: a phase 2 double-blind randomised study. , 2013, The Lancet. Oncology.

[20]  A. Hinnebusch,et al.  Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3 , 2013, Nature Genetics.

[21]  G. Linette,et al.  Phase II study of selumetinib (sel) versus temozolomide (TMZ) in gnaq/Gna11 (Gq/11) mutant (mut) uveal melanoma (UM). , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[22]  S. Seshagiri,et al.  The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer , 2013, Nature Reviews Cancer.

[23]  J. William Harbour,et al.  The DecisionDx-UM Gene Expression Profile Test Provides Risk Stratification and Individualized Patient Care in Uveal Melanoma , 2013, PLoS currents.

[24]  Erwin G. Van Meir,et al.  Hypoxia inducible factor pathway inhibitors as anticancer therapeutics. , 2013, Future medicinal chemistry.

[25]  G. Schwartz,et al.  Inhibition of Mutant GNAQ Signaling in Uveal Melanoma Induces AMPK-Dependent Autophagic Cell Death , 2013, Molecular Cancer Therapeutics.

[26]  J. Larkin,et al.  Ipilimumab activity in advanced uveal melanoma , 2013, Melanoma research.

[27]  A. Bowcock,et al.  Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma , 2013, Nature Genetics.

[28]  David J. Forsthoefel,et al.  A genome-wide RNAi screen reveals a Trio-regulated Rho GTPase circuitry transducing mitogenic signals initiated by G protein-coupled receptors. , 2013, Molecular cell.

[29]  P. Ott,et al.  Inhibition of both BRAF and MEK in BRAFV600E mutant melanoma restores compromised dendritic cell (DC) function while having differential direct effects on DC properties , 2013, Cancer Immunology, Immunotherapy.

[30]  Takami Sato,et al.  A pilot study of sunitinib malate in patients with metastatic uveal melanoma , 2012, Melanoma research.

[31]  V. Sondak,et al.  Phase II Trial of Sorafenib in Combination with Carboplatin and Paclitaxel in Patients with Metastatic Uveal Melanoma: SWOG S0512 , 2012, PloS one.

[32]  J. Forrester,et al.  Good news–bad news: the Yin and Yang of immune privilege in the eye , 2012, Front. Immun..

[33]  Somasekar Seshagiri,et al.  Loss of the Tumor Suppressor BAP1 Causes Myeloid Transformation , 2012, Science.

[34]  Erwin G. Van Meir,et al.  KCN1, a Novel Synthetic Sulfonamide Anticancer Agent: In Vitro and In Vivo Anti-Pancreatic Cancer Activities and Preclinical Pharmacology , 2012, PloS one.

[35]  Erwin G. Van Meir,et al.  Arylsulfonamide KCN1 Inhibits In Vivo Glioma Growth and Interferes with HIF Signaling by Disrupting HIF-1α Interaction with Cofactors p300/CBP , 2012, Clinical Cancer Research.

[36]  J. Snyder,et al.  Design and in vitro activities of N-alkyl-N-[(8-R-2,2-dimethyl-2H-chromen-6-yl)methyl]heteroarylsulfonamides, novel, small-molecule hypoxia inducible factor-1 pathway inhibitors and anticancer agents. , 2012, Journal of medicinal chemistry.

[37]  J. Snyder,et al.  Binding Model for the Interaction of Anticancer Arylsulfonamides with the p300 Transcription Cofactor. , 2012, ACS medicinal chemistry letters.

[38]  M. Ladanyi,et al.  New Strategies in Pleural Mesothelioma: BAP1 and NF2 as Novel Targets for Therapeutic Development and Risk Assessment , 2012, Clinical Cancer Research.

[39]  Erwin G. Van Meir,et al.  Structure-activity relationship of 2,2-dimethyl-2H-chromene based arylsulfonamide analogs of 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide, a novel small molecule hypoxia inducible factor-1 (HIF-1) pathway inhibitor and anti-cancer agent. , 2012, Bioorganic & medicinal chemistry.

[40]  Dana M Previte,et al.  Influence of CD8+ T regulatory cells on intraocular tumor development , 2012, Front. Immun..

[41]  S. Woodman,et al.  Combination Small Molecule MEK and PI3K Inhibition Enhances Uveal Melanoma Cell Death in a Mutant GNAQ- and GNA11-Dependent Manner , 2012, Clinical Cancer Research.

[42]  Jun O. Liu,et al.  Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. , 2012, Genes & development.

[43]  F. Hodi,et al.  Protein Kinase C Inhibitor AEB071 Targets Ocular Melanoma Harboring GNAQ Mutations via Effects on the PKC/Erk1/2 and PKC/NF-κB Pathways , 2012, Molecular Cancer Therapeutics.

[44]  L. Qin,et al.  Identification of Unique MEK-Dependent Genes in GNAQ Mutant Uveal Melanoma Involved in Cell Growth, Tumor Cell Invasion, and MEK Resistance , 2012, Clinical Cancer Research.

[45]  J. Niederkorn Ocular Immune Privilege and Ocular Melanoma: Parallel Universes or Immunological Plagiarism? , 2012, Front. Immun..

[46]  M. Loda,et al.  c-Met, epidermal growth factor receptor, and insulin-like growth factor-1 receptor are important for growth in uveal melanoma and independently contribute to migration and metastatic potential , 2012, Melanoma research.

[47]  R W Wilkinson,et al.  The MEK1/2 inhibitor, selumetinib (AZD6244; ARRY-142886), enhances anti-tumour efficacy when combined with conventional chemotherapeutic agents in human tumour xenograft models , 2012, British Journal of Cancer.

[48]  A. Giobbie-Hurder,et al.  The Protein Kinase C Inhibitor Enzastaurin Exhibits Antitumor Activity against Uveal Melanoma , 2012, PloS one.

[49]  Brian Keith,et al.  HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression , 2011, Nature Reviews Cancer.

[50]  Erwin G. Van Meir,et al.  Design and synthesis of novel small-molecule inhibitors of the hypoxia inducible factor pathway. , 2011, Journal of medicinal chemistry.

[51]  A. Bowcock,et al.  Histone Deacetylase Inhibitors Induce Growth Arrest and Differentiation in Uveal Melanoma , 2011, Clinical Cancer Research.

[52]  M. Abdel-Rahman,et al.  Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers , 2011, Journal of Medical Genetics.

[53]  Erwin G. Van Meir,et al.  Sulfonamides as a new scaffold for hypoxia inducible factor pathway inhibitors. , 2011, Bioorganic & medicinal chemistry letters.

[54]  J. Kirkwood,et al.  Aflibercept (VEGF Trap) in Inoperable Stage III or Stage IV Melanoma of Cutaneous or Uveal Origin , 2011, Clinical Cancer Research.

[55]  J. Becker,et al.  Germline mutations in BAP1 predispose to melanocytic tumors , 2011, Nature Genetics.

[56]  N. Cox,et al.  Germline BAP1 mutations predispose to malignant mesothelioma , 2011, Nature Genetics.

[57]  A. D. Van den Abbeele,et al.  A phase I trial of ipilimumab plus bevacizumab in patients with unresectable stage III or stage IV melanoma. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[58]  G. Shapiro,et al.  Activity of cabozantinib (XL184) in soft tissue and bone: Results of a phase II randomized discontinuation trial (RDT) in patients (pts) with advanced solid tumors. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[59]  Peter W. Chen,et al.  NKT cell exacerbation of liver metastases arising from melanomas transplanted into either the eyes or spleens of mice. , 2011, Investigative ophthalmology & visual science.

[60]  A. Bowcock,et al.  Frequent Mutation of BAP1 in Metastasizing Uveal Melanomas , 2010, Science.

[61]  P. Hwu,et al.  Phase 2 open-label study of weekly docosahexaenoic acid–paclitaxel in patients with metastatic uveal melanoma , 2010, Melanoma research.

[62]  J. O'Brien,et al.  Mutations in GNA11 in uveal melanoma. , 2010, The New England journal of medicine.

[63]  E. Jordanova,et al.  In Aged Mice, Outgrowth of Intraocular Melanoma Depends on Proangiogenic M2-Type Macrophages , 2010, The Journal of Immunology.

[64]  J. Abastado,et al.  Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. , 2010, The Journal of clinical investigation.

[65]  O. Larsson,et al.  Intratumoral forkhead box P3‐positive regulatory T cells predict poor survival in cyclooxygenase‐2–positive uveal melanoma , 2010, Cancer.

[66]  G. Luyten,et al.  Regulation of VEGF-A in uveal melanoma. , 2010, Investigative ophthalmology & visual science.

[67]  Peter W. Chen,et al.  Influence of Immune Privilege on Ocular Tumor Development , 2010, Ocular immunology and inflammation.

[68]  E. Thorland,et al.  Infiltrative T regulatory cells in enucleated uveal melanomas. , 2009, Transactions of the American Ophthalmological Society.

[69]  Axel Hoos,et al.  Guidelines for the Evaluation of Immune Therapy Activity in Solid Tumors: Immune-Related Response Criteria , 2009, Clinical Cancer Research.

[70]  S. Gygi,et al.  Defining the Human Deubiquitinating Enzyme Interaction Landscape , 2009, Cell.

[71]  B. Alizadeh,et al.  Evidence for natural killer cell-mediated protection from metastasis formation in uveal melanoma patients. , 2009, Investigative ophthalmology & visual science.

[72]  R. Bilonick,et al.  Activated CD11b+ CD15+ granulocytes increase in the blood of patients with uveal melanoma. , 2009, Investigative ophthalmology & visual science.

[73]  E. Simpson,et al.  Frequent somatic mutations of GNAQ in uveal melanoma and blue nevi , 2008, Nature.

[74]  M Laurin Council,et al.  Oncogenic mutations in GNAQ occur early in uveal melanoma. , 2008, Investigative ophthalmology & visual science.

[75]  O. Larsson,et al.  Receptors for the liver synthesized growth factors IGF‐1 and HGF/SF in uveal melanoma: intercorrelation and prognostic implications , 2008, Acta ophthalmologica.

[76]  F. Mascarelli,et al.  O-Mel-Inib: A Cancéro-pôle Nord-Ouest multicenter phase II trial of high-dose Imatinib mesylate in metastatic uveal melanoma , 2008, Investigational New Drugs.

[77]  J. Harbour,et al.  Prognostic biomarkers in uveal melanoma: evidence for a stem cell-like phenotype associated with metastasis , 2008, Melanoma research.

[78]  Peter W. Chen,et al.  PD-L1: PD-1 interaction contributes to the functional suppression of T-cell responses to human uveal melanoma cells in vitro. , 2008, Investigative ophthalmology & visual science.

[79]  R. Kiessling,et al.  Modulation of the Tumor Cell Phenotype by IFN-γ Results in Resistance of Uveal Melanoma Cells to Granule-Mediated Lysis by Cytotoxic Lymphocytes1 , 2008, The Journal of Immunology.

[80]  E. Jordanova,et al.  Monosomy of chromosome 3 and an inflammatory phenotype occur together in uveal melanoma. , 2008, Investigative ophthalmology & visual science.

[81]  Peter W. Chen,et al.  Uveal melanoma expression of indoleamine 2,3-deoxygenase: establishment of an immune privileged environment by tryptophan depletion. , 2007, Experimental eye research.

[82]  A. Bowcock,et al.  Loss of Heterozygosity of Chromosome 3 Detected with Single Nucleotide Polymorphisms Is Superior to Monosomy 3 for Predicting Metastasis in Uveal Melanoma , 2007, Clinical Cancer Research.

[83]  M. Kazanietz,et al.  Protein kinase C and other diacylglycerol effectors in cancer , 2007, Nature Reviews Cancer.

[84]  K. Mallikarjuna,et al.  Expression of Epidermal Growth Factor Receptor, Ezrin, Hepatocyte Growth Factor, and c-Met in Uveal Melanoma: An Immunohistochemical Study , 2007, Current eye research.

[85]  E. Thiel,et al.  A randomized phase II trial of gemcitabine plus treosulfan versus treosulfan alone in patients with metastatic uveal melanoma. , 2006, Annals of oncology : official journal of the European Society for Medical Oncology.

[86]  J. Kapp,et al.  Accumulation of Immunosuppressive CD11b+ Myeloid Cells Correlates with the Failure to Prevent Tumor Growth in the Anterior Chamber of the Eye1 , 2006, The Journal of Immunology.

[87]  F. Agani,et al.  Involvement of HIF-1 in Invasion of Mum2B Uveal Melanoma Cells , 2006, Clinical & Experimental Metastasis.

[88]  C. Eswar,et al.  A prospective single arm phase II study of dacarbazine and treosulfan as first-line therapy in metastatic uveal melanoma , 2006, Melanoma research.

[89]  J. Hepler,et al.  Cell signalling diversity of the Gqα family of heterotrimeric G proteins , 2006 .

[90]  P. Chapman,et al.  Variates of survival in metastatic uveal melanoma. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[91]  E. Thiel,et al.  Phase II trial of cisplatin, gemcitabine and treosulfan in patients with metastatic uveal melanoma , 2005, Melanoma research.

[92]  E. Thiel,et al.  A phase II study of bendamustine chemotherapy as second-line treatment in metastatic uveal melanoma , 2004, Melanoma research.

[93]  Justis P. Ehlers,et al.  Gene Expression Profiling in Uveal Melanoma Reveals Two Molecular Classes and Predicts Metastatic Death , 2004, Cancer Research.

[94]  J. Becker,et al.  Loss of nonclassical MHC molecules MIC-A/B expression during progression of uveal melanoma , 2004, British Journal of Cancer.

[95]  R. Kiessling,et al.  Autocrine Secretion of Fas Ligand Shields Tumor Cells from Fas-Mediated Killing by Cytotoxic Lymphocytes , 2004, Cancer Research.

[96]  M. Schachner,et al.  The developmentally regulated neural crest‐associated glycotope HNK‐1 predicts metastasis in cutaneous malignant melanoma , 2004, The Journal of pathology.

[97]  A. Bedikian,et al.  Phase II evaluation of temozolomide in metastatic choroidal melanoma , 2003, Melanoma research.

[98]  L. Parvinen,et al.  Bleomycin, vincristine, lomustine and dacarbazine (BOLD) in combination with recombinant interferon alpha-2b for metastatic uveal melanoma. , 2003, European journal of cancer.

[99]  Arun D. Singh,et al.  Incidence of uveal melanoma in the United States: 1973-1997. , 2003, Ophthalmology.

[100]  D. Srivastava,et al.  Gαq and Gα11 proteins mediate endothelin-1 signaling in neural crest-derived pharyngeal arch mesenchyme , 2003 .

[101]  A. Nicholson,et al.  Mutations of the BRAF gene in human cancer , 2002, Nature.

[102]  Yukihiro Kondo,et al.  Expression and Characterization of Hypoxia-Inducible Factor (HIF)-3α in Human Kidney: Suppression of HIF-Mediated Gene Expression by HIF-3α , 2001 .

[103]  S. Grisanti,et al.  TGF‐β in uveal melanoma , 2001 .

[104]  U. Schmidt-Erfurth,et al.  Photodynamic therapy with verteporfin: A new treatment in ophthalmology , 2001, Seminars in ophthalmology.

[105]  H. Grossniklaus,et al.  Neoadjuvant interferon alfa-2b treatment in a murine model for metastatic ocular melanoma: a preliminary study. , 2000, Archives of ophthalmology.

[106]  E. Mayhew,et al.  Human Uveal Melanoma Cells Produce Macrophage Migration-Inhibitory Factor to Prevent Lysis by NK Cells1 , 2000, The Journal of Immunology.

[107]  D A Hilton,et al.  Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. , 1999, Cancer research.

[108]  G. V. van Muijen,et al.  High expression of immunotherapy candidate proteins gp100, MART-1, tyrosinase and TRP-1 in uveal melanoma. , 1998, British Journal of Cancer.

[109]  V. Servois,et al.  Treatment of liver metastases from uveal melanoma by combined surgery-chemotherapy. , 1998, European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology.

[110]  P. D. de Jong,et al.  Expression of MAGE, gp100 and tyrosinase genes in uveal melanoma cell lines , 1998, Melanoma research.

[111]  R. Meuli,et al.  Treatment of ocular melanoma metastatic to the liver by hepatic arterial chemotherapy. , 1997, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[112]  J. A. Bishop Molecular pathology of melanoma , 1997, Cancer and Metastasis Reviews.

[113]  H. Niitani,et al.  [Phase II study]. , 1995, Gan to kagaku ryoho. Cancer & chemotherapy.

[114]  J. Gutkind,et al.  Mutated alpha subunit of the Gq protein induces malignant transformation in NIH 3T3 cells , 1992, Molecular and cellular biology.

[115]  B. Ksander,et al.  Infiltration and accumulation of precursor cytotoxic T-cells increase with time in progressively growing ocular tumors. , 1991, Cancer research.

[116]  B. Damato,et al.  Analysis of lymphocytic infiltration in uveal melanoma. , 1990, Investigative ophthalmology & visual science.

[117]  S Marsoni,et al.  The phase II trial. , 1985, Cancer treatment reports.

[118]  J. Niederkorn,et al.  Characterization of the suppressor cell(s) responsible for anterior chamber-associated immune deviation (ACAID) induced in BALB/c mice by P815 cells. , 1985, Journal of immunology.

[119]  J. Niederkorn,et al.  Induction of anterior chamber-associated immune deviation requires an intact, functional spleen , 1981, The Journal of experimental medicine.

[120]  Selumetinib shows promise in metastatic uveal melanoma. , 2013, Cancer discovery.

[121]  S. Woodman,et al.  Cancer Therapy : Preclinical Combination Small Molecule MEK and PI 3 K Inhibition Enhances Uveal Melanoma Cell Death in a Mutant GNAQ-and GNA 11-Dependent Manner , 2012 .

[122]  G. Barsh,et al.  Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi , 2010 .

[123]  D. Srivastava,et al.  Galphaq and Galpha11 proteins mediate endothelin-1 signaling in neural crest-derived pharyngeal arch mesenchyme. , 2003, Developmental biology.

[124]  Martine J Jager,et al.  Insulin-like growth factor-1 receptor in uveal melanoma: a predictor for metastatic disease and a potential therapeutic target. , 2002, Investigative ophthalmology & visual science.

[125]  Y. Kondo,et al.  Expression and characterization of hypoxia-inducible factor (HIF)-3alpha in human kidney: suppression of HIF-mediated gene expression by HIF-3alpha. , 2001, Biochemical and biophysical research communications.

[126]  T. Dougherty Photodynamic therapy. , 1993, Photochemistry and photobiology.

[127]  J. Streilein,et al.  Immune privilege extended to allogeneic tumor cells in the vitreous cavity. , 1991, Investigative ophthalmology & visual science.

[128]  I. McLean,et al.  Lymphocytic infiltration in uveal malignant melanoma , 1990, Cancer.

[129]  Sozen,et al.  Mutations in GNA 11 in Uveal Melanoma , 2022 .