The principles of tissue engineering and its recent advances and future prospects

선천성 기형이나 외상, 암 절제 후에 생긴 결손부위를 복 원시키기 위한 재건성형수술은 대부분 자가조직을 이용하므 로 공여부에 또 다른 반흔과 추형을 남기게 된다. 이를 피하 기 위해 이종이식을 시도하기도 하지만 면역거부반응, 면역 억제재의 부작용을 피할 수 없다. 공여부 손상을 최소화하면 서 원하는 조직을 형태적, 기능적으로 복원시킬 수 있다는 가능성을 보여주는 조직공학은 의학발전에 획기적인 기여를 할 수 있어 많은 생체공학자, 세포생물학자, 임상의사들의 주목을 받아왔다. 오래 전부터 이용되어온 백혈병 환자에서 의 골수이식은 세포치료기법이고 재생의학이라고 할 수 있 다면, 외과 영역에서 세포와 생체적합재료를 이용하여 새로 운 조직을 재생시켜 손상된 조직을 복원하는 시술을 조직공 학이라고 할 수 있으므로 근본적으로 재생의학과 조직공학 은 궁극적으로 같은 개념이라고도 볼 수 있다. 조직공학에서 이용되는 스케폴드는 독성이나 이물반응 이 없고, 다공성이나 표면처리 등 스케폴드의 미세구조가 실 체 생체의 자연적인 세포외기질(extracellular matrix)과 유 사해서 세포친화력이 우수해야 하므로 공학적, 세포생물학 적인 측면이 상호유기적으로 고려되어야 한다. 또한 이러한 세포-스케폴드 복합체가 생체 내에서 원하는 조직으로 재생 되기 위해서는 충분한 영양과 산소를 공급받아야 하므로 주 The definition of tissue engineering by Langer is “an interdisciplinary field that applies the principles of engineering and the life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function.” This technology has achieved remarkable growth in the past 20 years, provoked by its potential role in regenerating new tissues and naturally healing injured or diseased organs. Although stem cells are still in the research phase, their pluripotency and unlimited capacity for self-renewal may enable significant advances for reconstructive and cosmetic procedures with this engineering technology. This article aims at outlining the principles of tissue engineering and its recent advances and future prospects.

[1]  L. Niklason,et al.  Scaffold-free vascular tissue engineering using bioprinting. , 2009, Biomaterials.

[2]  S. Hollister Scaffold Design and Manufacturing: From Concept to Clinic , 2009, Advanced materials.

[3]  E. Thompson,et al.  Host rather than graft origin of Matrigel-induced adipose tissue in the murine tissue-engineering chamber. , 2007, Tissue engineering.

[4]  I. Suh,et al.  Case Reports of Adipose-derived Stem Cell Therapy for Nasal Skin Necrosis after Filler Injection , 2012, Archives of plastic surgery.

[5]  Jong Won Rhie,et al.  Adipose-derived stem cells: characterization and clinical application , 2012 .

[6]  S. Heilshorn,et al.  Biomaterial design strategies for the treatment of spinal cord injuries. , 2010, Journal of neurotrauma.

[7]  S. Slavin Nonsurgical Breast Enlargement Using an External Soft-Tissue Expansion System. , 2000, Plastic and reconstructive surgery.

[8]  B. Thiers Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors , 2008 .

[9]  N. L'Heureux,et al.  Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. , 2009, Biomaterials.

[10]  S. Choo,et al.  The Decellularized Vascular Allograft as an Experimental Platform for Developing a Biocompatible Small-Diameter Graft Conduit in a Rat Surgical Model , 2011, Yonsei medical journal.

[11]  T. Ichisaka,et al.  Induction of Pluripotent Stem Cells From Adult Human Fibroblasts by Defined Factors , 2008 .

[12]  Y. Na,et al.  Comparison of the Wound Healing Effect of Cellulose and Gelatin: An In Vivo Study , 2012, Archives of plastic surgery.

[13]  Hak Chang,et al.  The Efficacy and Safety of Platelet-Rich Plasma and Adipose-Derived Stem Cells: An Update , 2012, Archives of plastic surgery.

[14]  P. Janmey,et al.  Tissue Cells Feel and Respond to the Stiffness of Their Substrate , 2005, Science.

[15]  J. Mao,et al.  Bioengineering strategies to generate vascularized soft tissue grafts with sustained shape. , 2009, Methods.

[16]  P. Aebischer,et al.  Review: Tissue engineering in the nervous system , 1994, Biotechnology and bioengineering.

[17]  G. Evans,et al.  Stem Cells in Plastic Surgery: A Review of Current Clinical and Translational Applications , 2013, Archives of plastic surgery.

[18]  S. Kanno,et al.  Establishment of a simple and practical procedure applicable to therapeutic angiogenesis. , 1999, Circulation.

[19]  A. Hoffman Hydrogels for Biomedical Applications , 2001, Advanced drug delivery reviews.

[20]  J. Friedman,et al.  Identification of White Adipocyte Progenitor Cells In Vivo , 2008, Cell.

[21]  S. Homma,et al.  Neovascularization of ischemic myocardium by human bone-marrow–derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function , 2001, Nature Medicine.

[22]  Daegu Son,et al.  Treatment of Diabetic Foot Ulcer Using Matriderm In Comparison with a Skin Graft , 2013, Archives of plastic surgery.

[23]  M. Conconi,et al.  Myoblast-acellular skeletal muscle matrix constructs guarantee a long-term repair of experimental full-thickness abdominal wall defects. , 2006, Tissue engineering.

[24]  J. Folkman,et al.  SELF-REGULATION OF GROWTH IN THREE DIMENSIONS , 1973, The Journal of experimental medicine.

[25]  D. Hartmann,et al.  An immunohistological study of the revascularization process in human skin transplanted onto the nude mouse. , 1987, Transplantation.

[26]  G. Blin,et al.  Multiple Functionalities of Polyelectrolyte Multilayer Films: New Biomedical Applications , 2010, Advanced materials.

[27]  A. Atala,et al.  Regenerative Medicine Strategies for Treating Neurogenic Bladder , 2011, International neurourology journal.

[28]  U. Chung,et al.  Current Progress on Tissue Engineering of Bone and Cartilage , 2012 .

[29]  Daegu Son,et al.  Evaluation of an Amniotic Membrane-Collagen Dermal Substitute in the Management of Full-Thickness Skin Defects in a Pig , 2013, Archives of plastic surgery.

[30]  Sangjin Yoo,et al.  Simple and Novel Three Dimensional Neuronal Cell Culture Using a Micro Mesh Scaffold , 2011, Experimental neurobiology.

[31]  D. Castner,et al.  Biomedical surface science: Foundations to frontiers , 2002 .

[32]  Geraldine Mitchell,et al.  The influence of architecture on degradation and tissue ingrowth into three-dimensional poly(lactic-co-glycolic acid) scaffolds in vitro and in vivo. , 2006, Biomaterials.

[33]  Pravin K. Patel,et al.  Application of Virtual Surgical Planning with Computer Assisted Design and Manufacturing Technology to Cranio-Maxillofacial Surgery , 2012, Archives of plastic surgery.

[34]  Robert G. Dennis,et al.  Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro , 2000, In Vitro Cellular & Developmental Biology - Animal.

[35]  Wayne A Morrison,et al.  Adipose tissue engineering based on the controlled release of fibroblast growth factor-2 in a collagen matrix. , 2006, Tissue engineering.

[36]  Jong Hoon Lee,et al.  Possibility of Undifferentiated Human Thigh Adipose Stem Cells Differentiating into Functional Hepatocytes , 2012, Archives of plastic surgery.

[37]  Wouter J A Dhert,et al.  Use of fluorochrome labels in in vivo bone tissue engineering research. , 2010, Tissue engineering. Part B, Reviews.

[38]  Tian Zhu Li,et al.  Stem cells in musculoskeletal system for clinical application , 2011 .

[39]  T. Park,et al.  Magnetic Bionanoparticle Enhances Homing of Endothelial Progenitor Cells in Mouse Hindlimb Ischemia , 2012, Korean circulation journal.