Climate change and plant distribution: local models predict high‐elevation persistence

Mountain ecosystems will likely be affected by global warming during the 21st century, with substantial biodiversity loss predicted by species distribution models (SDMs). Depending on the geographic extent, elevation range, and spatial resolution of data used in making these models, different rates of habitat loss have been predicted, with associated risk of species extinction. Few coordinated across‐scale comparisons have been made using data of different resolutions and geographic extents. Here, we assess whether climate change‐induced habitat losses predicted at the European scale (10 × 10′ grid cells) are also predicted from local‐scale data and modeling (25 m × 25 m grid cells) in two regions of the Swiss Alps. We show that local‐scale models predict persistence of suitable habitats in up to 100% of species that were predicted by a European‐scale model to lose all their suitable habitats in the area. Proportion of habitat loss depends on climate change scenario and study area. We find good agreement between the mismatch in predictions between scales and the fine‐grain elevation range within 10 × 10′ cells. The greatest prediction discrepancy for alpine species occurs in the area with the largest nival zone. Our results suggest elevation range as the main driver for the observed prediction discrepancies. Local‐scale projections may better reflect the possibility for species to track their climatic requirement toward higher elevations.

[1]  Antoine Guisan,et al.  Prediction of plant species distributions across six millennia. , 2008, Ecology letters.

[2]  M. Sykes,et al.  Predicting global change impacts on plant species' distributions: Future challenges , 2008 .

[3]  M. A N D A,et al.  Spatial scale affects bioclimate model projections of climate change impacts on mountain plants , 2008 .

[4]  C. Dormann Promising the future? Global change projections of species distributions , 2007 .

[5]  M. Araújo,et al.  Exposure of global mountain systems to climate warming during the 21st Century , 2007 .

[6]  A. Peterson,et al.  Evidence of climatic niche shift during biological invasion. , 2007, Ecology letters.

[7]  David R. B. Stockwell,et al.  Forecasting the Effects of Global Warming on Biodiversity , 2007 .

[8]  G. Grabherr,et al.  Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA * master site Schrankogel, Tyrol, Austria , 2007 .

[9]  J. Gehrig-Fasel Treeline and climate change : analyzing and modeling patterns and shifts in the Swiss Alps , 2007 .

[10]  Mark New,et al.  Ensemble forecasting of species distributions. , 2007, Trends in ecology & evolution.

[11]  M. Zappa,et al.  Are niche‐based species distribution models transferable in space? , 2006 .

[12]  R. Cowling,et al.  Predicting patterns of plant species richness in megadiverse South Africa , 2006 .

[13]  M. Araújo,et al.  Five (or so) challenges for species distribution modelling , 2006 .

[14]  T. Hastie,et al.  Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees , 2006 .

[15]  J. Drake,et al.  Modelling ecological niches with support vector machines , 2006 .

[16]  A. Townsend Peterson,et al.  Novel methods improve prediction of species' distributions from occurrence data , 2006 .

[17]  Greg Hughes,et al.  Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions , 2006 .

[18]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[19]  P. Vittoz,et al.  Flore alpine et réchauffement climatique: observation de trois sommets valaisans à travers le XXe siècle , 2006 .

[20]  Martin Beniston,et al.  Mountain Weather and Climate: A General Overview and a Focus on Climatic Change in the Alps , 2006, Hydrobiologia.

[21]  A. Prasad,et al.  Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction , 2006, Ecosystems.

[22]  G. Walther,et al.  Trends in the upward shift of alpine plants , 2005 .

[23]  W. Thuiller,et al.  Predicting species distribution: offering more than simple habitat models. , 2005, Ecology letters.

[24]  M. Araújo,et al.  Reducing uncertainty in projections of extinction risk from climate change , 2005 .

[25]  M. Sykes,et al.  Climate change threats to plant diversity in Europe. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  P. Vittoz,et al.  Flore alpine et réchauffement climatique , 2005 .

[27]  J. Ninot Reseña de "Flora alpina" de D. Aeschimann, K. Lauber, D. M. Moser y J. P. Theurillat , 2005 .

[28]  Paul H. Williams,et al.  Downscaling European species atlas distributions to a finer resolution: implications for conservation planning , 2005 .

[29]  M. Kearney,et al.  MAPPING THE FUNDAMENTAL NICHE: PHYSIOLOGY, CLIMATE, AND THE DISTRIBUTION OF A NOCTURNAL LIZARD , 2004 .

[30]  A. Hampe Bioclimate envelope models: what they detect and what they hide , 2004 .

[31]  T. Dawson,et al.  Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data , 2004 .

[32]  S. Dullinger,et al.  Modelling climate change‐driven treeline shifts: relative effects of temperature increase, dispersal and invasibility , 2004 .

[33]  S. Lavorel,et al.  Effects of restricting environmental range of data to project current and future species distributions , 2004 .

[34]  Stefan Dullinger,et al.  Habitat distribution models, spatial autocorrelation, functional traits and dispersal capacity of alpine plant species , 2004 .

[35]  O. Phillips,et al.  Extinction risk from climate change , 2004, Nature.

[36]  D. Doak,et al.  Book Review: Quantitative Conservation biology: Theory and Practice of Population Viability analysis , 2004, Landscape Ecology.

[37]  W. Thuiller BIOMOD – optimizing predictions of species distributions and projecting potential future shifts under global change , 2003 .

[38]  John Sabo,et al.  Morris, W. F., and D. F. Doak. 2003. Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis. Sinauer Associates, Sunderland, Massachusetts, USA , 2003 .

[39]  M. Grosjean,et al.  Climate Variability and Change in High Elevation Regions: Past, Present and Future , 2003 .

[40]  Stefan Dullinger,et al.  A regional impact assessment of climate and land‐use change on alpine vegetation , 2003 .

[41]  M. Bahn,et al.  Recent Increases in Summit Flora Caused by Warming in the Alps , 2003 .

[42]  Gian-Reto Walther,et al.  Plants in a warmer world , 2003 .

[43]  Trevor Hastie,et al.  Generalized linear and generalized additive models in studies of species distributions: setting the scene , 2002 .

[44]  J. Oksanen,et al.  Continuum theory revisited: what shape are species responses along ecological gradients? , 2002 .

[45]  R. Leemans,et al.  Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050 , 2002 .

[46]  Thomas C. Edwards,et al.  Modeling spatially explicit forest structural attributes using Generalized Additive Models , 2001 .

[47]  Antoine Guisan,et al.  Predictive habitat distribution models in ecology , 2000 .

[48]  Alexei G. Sankovski,et al.  Special report on emissions scenarios : a special report of Working group III of the Intergovernmental Panel on Climate Change , 2000 .

[49]  A. Guisan,et al.  Assessing alpine plant vulnerability to climate change: a modeling perspective , 2000 .

[50]  S. Ferrier,et al.  An evaluation of alternative algorithms for fitting species distribution models using logistic regression , 2000 .

[51]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[52]  A. Baltensweiler,et al.  Spatially distributed hydrotope-based modelling of evapotranspiration and runoff in mountainous basins , 1999 .

[53]  N. Zimmermann,et al.  Predictive mapping of alpine grasslands in Switzerland: Species versus community approach , 1999 .

[54]  Hal Caswell,et al.  Habitat fragmentation and extinction thresholds on fractal landscapes , 1999 .

[55]  D. Carson,et al.  Climate modelling: Achievements and prospects , 1999 .

[56]  P. D. Körner Alpine Plant Life , 1999, Springer Berlin Heidelberg.

[57]  J. Lawton,et al.  Making mistakes when predicting shifts in species range in response to global warming , 1998, Nature.

[58]  John Bell,et al.  A review of methods for the assessment of prediction errors in conservation presence/absence models , 1997, Environmental Conservation.

[59]  G. Grabherr,et al.  Effects of climate change on mountain ecosystems -- Upward shifting of alpine plants , 1996 .

[60]  Peter Carey,et al.  DISPERSE: A Cellular Automaton for Predicting the Distribution of Species in a Changed Climate , 1996 .

[61]  L. Tessier,et al.  Impacts of climate change on mountain regions , 1996 .

[62]  Antoine Guisan,et al.  Potential ecological impacts of climate change in the Alps and Fennoscandian mountains , 1996 .

[63]  G. Grabherr,et al.  Climate effects on mountain plants , 1994, Nature.

[64]  H. Olff,et al.  A hierarchical set of models for species response analysis , 1993 .

[65]  W. Cramer,et al.  A global biome model based on plant physiology and dominance, soil properties and climate , 1992 .

[66]  H. Hofer Veränderungen in der Vegetation von 14 Gipfeln des Berninagebietes zwischen 1905 und 1985 , 1992 .

[67]  T. Yee,et al.  Generalized additive models in plant ecology , 1991 .

[68]  G. Evelynhutchinson,et al.  Population studies: Animal ecology and demography , 1991 .

[69]  M. Bouët,et al.  Climat et météorologie de la Suisse romande , 1972 .

[70]  J. Braun-Blanquet Ein Jahrhundert Florenwandel am Piz Linard (3414 m) , 1957 .