Photoionization and Photofragmentation Dynamics of I2 in Intense Laser Fields: A Velocity-Map Imaging Study

The photoionization and photofragmentation dynamics of I2 in intense femtosecond near-infrared laser fields were studied using velocity-map imaging of cations, electrons, and anions. A series of photofragmentation pathways originating from different cationic electronic states were observed following single ionization, leading to I+ fragments with distinct kinetic energies, which could not be resolved in previous studies. Photoelectron spectra indicate that these high-lying dissociative states are primarily produced through nonresonant ionization from several molecular orbitals (MO) of the neutral. The photoelectron spectra also show clear signatures of resonant ionization pathways (Freeman resonances) to low-lying bound ionic states via Rydberg states of the neutral moiety. To investigate the role of these Rydberg states further, we imaged anionic products (I–) formed through ion-pair dissociations of neutral molecules excited to these Rydberg states by the intense femtosecond laser pulse. Collectively, these results shed significant new light on the complex dynamics of I2 molecules in intense laser fields and on the important role of neutral Rydberg states in a full description of strong-field phenomena in molecules.

[1]  Thomas M. Baumann,et al.  A localized view on molecular dissociation via electron-ion partial covariance , 2022, Communications Chemistry.

[2]  M. Ashfold,et al.  Nonadiabatic Coupling Effects in the 800 nm Strong-Field Ionization-Induced Coulomb Explosion of Methyl Iodide Revealed by Multimass Velocity Map Imaging and Ab Initio Simulation Studies. , 2021, The journal of physical chemistry. A.

[3]  P. Bucksbaum,et al.  Multi-Particle Three-Dimensional Covariance Imaging: "Coincidence" Insights into the Many-Body Fragmentation of Strong-Field Ionized D2O. , 2021, The journal of physical chemistry letters.

[4]  P. Bucksbaum,et al.  Strong-field ionization of water. II. Electronic and nuclear dynamics en route to double ionization , 2021, Physical Review A.

[5]  P. Bucksbaum,et al.  Multi-channel photodissociation and XUV-induced charge transfer dynamics in strong-field-ionized methyl iodide studied with time-resolved recoil-frame covariance imaging. , 2021, Faraday discussions.

[6]  B. Schmidt,et al.  Capturing roaming molecular fragments in real time , 2020, Science.

[7]  P. Bucksbaum,et al.  Momentum-resolved above-threshold ionization of deuterated water , 2020 .

[8]  F. Allum,et al.  Post extraction inversion slice imaging for 3D velocity map imaging experiments , 2020 .

[9]  Jian Wu,et al.  Correlated electron–nuclear dynamics of molecules in strong laser fields , 2020, Journal of Physics B: Atomic, Molecular and Optical Physics.

[10]  R. Schlögl resonance‐enhanced multiphoton ionization spectroscopy , 2020 .

[11]  Haiyang Li,et al.  Strong-field dissociative Rydberg excitation of oxygen molecules: Electron-nuclear correlation , 2019 .

[12]  Kevin F. Lee,et al.  Threshold photodissociation dynamics of NO2 studied by time-resolved cold target recoil ion momentum spectroscopy. , 2019, The Journal of chemical physics.

[13]  A. Trabattoni,et al.  Strong-field photoelectron momentum imaging of OCS at finely resolved incident intensities , 2019, New Journal of Physics.

[14]  M. Lewenstein,et al.  Imaging the Renner–Teller effect using laser-induced electron diffraction , 2018, Proceedings of the National Academy of Sciences.

[15]  B. Erk,et al.  Coulomb explosion imaging of CH3I and CH2ClI photodissociation dynamics. , 2018, The Journal of chemical physics.

[16]  S. Patchkovskii,et al.  Sequential and direct ionic excitation in the strong-field ionization of 1-butene molecules. , 2018, Physical chemistry chemical physics : PCCP.

[17]  W. Guo,et al.  Femtosecond photoelectron imaging of NO at 410 nm , 2018 .

[18]  H. Ibrahim,et al.  H2: the benchmark molecule for ultrafast science and technologies , 2018 .

[19]  G. Gibson,et al.  Single ionization of molecular iodine , 2017 .

[20]  M. Baudisch,et al.  Ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene , 2016, Science.

[21]  A. S. Bogomolov,et al.  Role of ion-pair states in the predissociation dynamics of Rydberg states of molecular iodine. , 2016, Physical chemistry chemical physics : PCCP.

[22]  M. Burt,et al.  Three-dimensional imaging of carbonyl sulfide and ethyl iodide photodissociation using the pixel imaging mass spectrometry camera. , 2015, The Review of scientific instruments.

[23]  T. Ridley,et al.  Heavy Rydberg behaviour in high vibrational levels of some ion-pair states of the halogens and inter-halogens. , 2015, The Journal of chemical physics.

[24]  C. Vallance,et al.  Coulomb-explosion imaging using a pixel-imaging mass-spectrometry camera , 2015 .

[25]  T. Rozgonyi,et al.  Removing electrons from more than one orbital: direct and indirect pathways to excited states of molecular cations , 2014 .

[26]  I. Sola,et al.  Control of ultrafast molecular photodissociation by laser-field-induced potentials. , 2014, Nature chemistry.

[27]  T. Rozgonyi,et al.  Strong field molecular ionization to multiple ionic states: direct versus indirect pathways , 2014 .

[28]  S. A. Kochubei,et al.  Predissociation of high-lying Rydberg states of molecular iodine via ion-pair states. , 2014, The Journal of chemical physics.

[29]  R. Turchetta,et al.  Covariance imaging experiments using a pixel-imaging mass-spectrometry camera , 2014 .

[30]  Q. Gong,et al.  Molecular-frame photoelectron angular distributions of strong-field tunneling from inner orbitals , 2013 .

[31]  Claire Vallance,et al.  PImMS, a fast event-triggered monolithic pixel detector with storage of multiple timestamps , 2012 .

[32]  J. Zhu,et al.  High-resolution electron-momentum spectroscopy of the valence orbitals of the iodine molecule , 2012 .

[33]  L. Bañares,et al.  Velocity map imaging and theoretical study of the Coulomb explosion of CH3I under intense femtosecond IR pulses. , 2012, The journal of physical chemistry. A.

[34]  M. Spanner,et al.  The Multielectron Ionization Dynamics Underlying Attosecond Strong-Field Spectroscopies , 2012, Science.

[35]  Terry A. Miller,et al.  Information for : Imaging ultrafast molecular dynamics with laser-induced electron diffraction , 2012 .

[36]  P. Corkum,et al.  Conical Intersection Dynamics in NO2 Probed by Homodyne High-Harmonic Spectroscopy , 2011, Science.

[37]  R. Turchetta,et al.  Pixel imaging mass spectrometry with fast silicon detectors , 2011 .

[38]  T. Hansson,et al.  Strong-field photoionization of O2 at intermediate light intensity , 2010 .

[39]  P. Corkum,et al.  High-harmonic homodyne detection of the ultrafast dissociation of Br2 molecules. , 2010, Physical review letters.

[40]  Bertrand Carré,et al.  Attosecond imaging of molecular electronic wavepackets , 2010 .

[41]  P. Corkum,et al.  Laser Tunnel Ionization from Multiple Orbitals in HCl , 2009, Science.

[42]  Nirit Dudovich,et al.  High harmonic interferometry of multi-electron dynamics in molecules , 2009, Nature.

[43]  G. Steinmeyer,et al.  Strong laser field fragmentation of H2: Coulomb explosion without double ionization. , 2009, Physical review letters.

[44]  Albert Stolow,et al.  Time-Resolved Dynamics in N2O4 Probed Using High Harmonic Generation , 2008, Science.

[45]  Markus Gühr,et al.  High Harmonic Generation from Multiple Orbitals in N2 , 2008, Science.

[46]  J. Levesque,et al.  Tomographic imaging of molecular orbitals , 2004, Nature.

[47]  I. Powis,et al.  Two-dimensional charged particle image inversion using a polar basis function expansion , 2004 .

[48]  F. Légaré,et al.  Sub-laser-cycle electron pulses for probing molecular dynamics , 2002, Nature.

[49]  E. Springate,et al.  Spatial alignment of diatomic molecules in intense laser fields: I. Experimental results , 2001 .

[50]  P. Corkum,et al.  Disentangling molecular alignment and enhanced ionization in intense laser fields , 1999 .

[51]  G. Gibson,et al.  CHARGE ASYMMETRIC DISSOCIATION INDUCED BY SEQUENTIAL AND NONSEQUENTIAL STRONG FIELD IONIZATION , 1999 .

[52]  G. Gibson,et al.  DIRECT EVIDENCE OF THE GENERALITY OF CHARGE-ASYMMETRIC DISSOCIATION OF MOLECULAR IODINE IONIZED BY STRONG LASER FIELDS , 1998 .

[53]  P. Taday,et al.  Dynamic and geometric laser-induced alignment of molecules in intense laser fields , 1998 .

[54]  D. Mathur,et al.  Formation of Negative Ions upon Irradiation of Molecules by Intense Laser Fields , 1998 .

[55]  T. Ridley,et al.  The (2+1) REMPI spectroscopy of jet-cooled Br2 , 1998 .

[56]  L. Visscher,et al.  Relativistic and correlated calculations on the ground, excited, and ionized states of iodine , 1997 .

[57]  David H. Parker,et al.  Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen , 1997 .

[58]  P. Corkum,et al.  LASER-INDUCED ELECTRON DIFFRACTION : A NEW TOOL FOR PROBING ULTRAFAST MOLECULAR DYNAMICS , 1996 .

[59]  M. Cockett,et al.  Zero kinetic energy pulsed field ionization (ZEKE‐PFI) spectroscopy of electronically and vibrationally excited states of I+2: The A 2Π3/2,u state and a new electronic state, the a 4Σ−u state , 1996 .

[60]  Schmidt,et al.  Multiple ionization of atomic and molecular iodine in strong laser fields. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[61]  Ivanov,et al.  Role of electron localization in intense-field molecular ionization. , 1995, Physical review letters.

[62]  A. Bandrauk,et al.  Charge-resonance-enhanced ionization of diatomic molecular ions by intense lasers. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[63]  T. Ridley,et al.  VIBRONIC COUPLING BETWEEN RYDBERG AND ION-PAIR STATES OF I2 INVESTIGATED BY (2+1) RESONANCE ENHANCED MULTIPHOTON IONIZATION SPECTROSCOPY , 1995 .

[64]  P. Corkum,et al.  Wave packet structure and dynamics measured by Coulomb explosion. , 1995, Physical review letters.

[65]  A. Yencha,et al.  Threshold photoelectron spectroscopy of I2 , 1994 .

[66]  Schumacher,et al.  Population trapping in Kr and Xe in intense laser fields. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[67]  S. Chu,et al.  Laser-induced molecular stabilization and trapping and chemical bond hardening in intense laser fields , 1992 .

[68]  A. Yencha,et al.  The resonance enhanced (2+1) multiphoton ionization spectrum of I2 , 1992 .

[69]  Muller,et al.  Observation of large populations in excited states after short-pulse multiphoton ionization. , 1992, Physical review letters.

[70]  D. Hanstorp,et al.  Determination of the electron affinity of iodine , 1992 .

[71]  Freeman,et al.  Dynamics of the high-intensity multiphoton ionization of N2. , 1991, Physical review letters.

[72]  A. Yencha,et al.  Vibrationally resolved excitation functions for direct ion-pair (I++I-) formation from photodissociation of I2 , 1991 .

[73]  L. Frasinski,et al.  Covariance Mapping: A Correlation Method Applied to Multiphoton Multiple Ionization , 1989, Science.

[74]  Schumacher,et al.  Above-threshold ionization with subpicosecond laser pulses. , 1987, Physical review letters.

[75]  D. Chandler,et al.  Two‐dimensional imaging of state‐selected photodissociation products detected by multiphoton ionization , 1987 .

[76]  R. Leroy Spectroscopic reassignment and ground-state dissociation energy of molecular iodine , 1970 .

[77]  L. Keldysh,et al.  IONIZATION IN THE FIELD OF A STRONG ELECTROMAGNETIC WAVE , 1964 .

[78]  R. S. Mulliken The Halogen Molecules and Their Spectra.J−J-Like Coupling. Molecular Ionization Potentials , 1934 .