Drug Release and Targeting: the Versatility of Polymethacrylate Nanoparticles for Peroral Administration Revealed by Using an Optimized In Vitro-Toolbox

[1]  V. Vogel,et al.  Bridging Laboratory and Large Scale Production: Preparation and In Vitro-Evaluation of Photosensitizer-Loaded Nanocarrier Devices for Targeted Drug Delivery , 2015, Pharmaceutical Research.

[2]  A. L. Le Faou,et al.  Human monocyte response to S-nitrosoglutathione-loaded nanoparticles: uptake, viability, and transcriptome. , 2015, Molecular pharmaceutics.

[3]  Sung Hee Lee,et al.  Intestinal Permeability Regulation by Tight Junction: Implication on Inflammatory Bowel Diseases , 2015, Intestinal research.

[4]  Omid C. Farokhzad,et al.  Polymeric nanoparticle technologies for oral drug delivery. , 2014, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[5]  A. Lamprecht,et al.  Lectin-decorated nanoparticles enhance binding to the inflamed tissue in experimental colitis. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[6]  A. Lamprecht,et al.  A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure. , 2014, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[7]  M. Neurath,et al.  Budesonide loaded nanoparticles with pH-sensitive coating for improved mucosal targeting in mouse models of inflammatory bowel diseases. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[8]  H. Onishi Pharmacokinetic Evaluation of Chitosan-Succinyl-Prednisolone Conjugate Microparticles as a Colonic Delivery System: Comparison with Enteric-Coated Conjugate Microparticles , 2014 .

[9]  D. Fischer,et al.  Drug delivery strategies in the therapy of inflammatory bowel disease. , 2014, Advanced drug delivery reviews.

[10]  R. Diab,et al.  Viability and gene expression responses to polymeric nanoparticles in human and rat cells , 2014, Cell Biology and Toxicology.

[11]  Matthias Wacker,et al.  Nanocarriers for intravenous injection--the long hard road to the market. , 2013, International journal of pharmaceutics.

[12]  M. McGuckin,et al.  Gastrointestinal Cell Lines Form Polarized Epithelia with an Adherent Mucus Layer when Cultured in Semi-Wet Interfaces with Mechanical Stimulation , 2013, PloS one.

[13]  J. Schulzke,et al.  Nano- and microscaled particles for drug targeting to inflamed intestinal mucosa: a first in vivo study in human patients. , 2013, Journal of controlled release : official journal of the Controlled Release Society.

[14]  J. Dressman,et al.  Analytical methods for dissolution testing of nanosized drugs , 2012, The Journal of pharmacy and pharmacology.

[15]  A. Lamprecht,et al.  Nanoparticle-based clodronate delivery mitigates murine experimental colitis. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[16]  Laura M Ensign,et al.  Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. , 2012, Advanced drug delivery reviews.

[17]  A. Lamprecht,et al.  Coated chitosan pellets containing rutin intended for the treatment of inflammatory bowel disease: in vitro characteristics and in vivo evaluation. , 2012, International journal of pharmaceutics.

[18]  M. Akhlaq,et al.  A simple high-performance liquid chromatographic practical approach for determination of flurbiprofen , 2011, Journal of advanced pharmaceutical technology & research.

[19]  G. Vandermeulen,et al.  Bioadhesive nanoparticles of fungal chitosan for oral DNA delivery. , 2010, International journal of pharmaceutics.

[20]  R. Gurny,et al.  Interaction of biodegradable nanoparticles with intestinal cells: the effect of surface hydrophilicity. , 2010, International journal of pharmaceutics.

[21]  D. Lo,et al.  Claudin 4-targeted protein incorporated into PLGA nanoparticles can mediate M cell targeted delivery. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[22]  Benjamin C. Tang,et al.  Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier , 2009, Proceedings of the National Academy of Sciences.

[23]  J M Irache,et al.  Combined hydroxypropyl-beta-cyclodextrin and poly(anhydride) nanoparticles improve the oral permeability of paclitaxel. , 2009, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[24]  D. Begley,et al.  Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[25]  Rainer H Müller,et al.  Development of an oral rutin nanocrystal formulation. , 2009, International journal of pharmaceutics.

[26]  J. Hanes,et al.  Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. , 2009, Advanced drug delivery reviews.

[27]  R. Cone,et al.  Barrier properties of mucus. , 2009, Advanced drug delivery reviews.

[28]  Stephanie E. A. Gratton,et al.  The effect of particle design on cellular internalization pathways , 2008, Proceedings of the National Academy of Sciences.

[29]  K. Goracinova,et al.  Chitosan coated Ca-alginate microparticles loaded with budesonide for delivery to the inflamed colonic mucosa. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[30]  Yves-Jacques Schneider,et al.  Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[31]  P. Artursson,et al.  Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. , 2005, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[32]  J. Siepmann,et al.  PLGA-based microparticles: elucidation of mechanisms and a new, simple mathematical model quantifying drug release. , 2002, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[33]  H E Junginger,et al.  Chitosan for mucosal vaccination. , 2001, Advanced drug delivery reviews.

[34]  Claus-Michael Lehr,et al.  Size-Dependent Bioadhesion of Micro- and Nanoparticulate Carriers to the Inflamed Colonic Mucosa , 2001, Pharmaceutical Research.

[35]  A. R. Kulkarni,et al.  Biodegradable polymeric nanoparticles as drug delivery devices. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[36]  J. Dressman,et al.  In vitro-in vivo correlations for lipophilic, poorly water-soluble drugs. , 2000, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[37]  T. Kissel,et al.  Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? , 2000, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[38]  R. Löbenberg,et al.  Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. , 2000, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[39]  L. Sundelöf,et al.  Ion-exclusion controlled size-exclusion chromatography of methacrylic acid-methyl methacrylate copolymers. , 2000, Journal of chromatography. A.

[40]  N. Oleinick,et al.  The photobiology of photodynamic therapy: cellular targets and mechanisms. , 1998, Radiation research.

[41]  Gordon L. Amidon,et al.  The Mechanism of Uptake of Biodegradable Microparticles in Caco-2 Cells Is Size Dependent , 1997, Pharmaceutical Research.

[42]  H. Yoshino,et al.  An organic acid-induced sigmoidal release system for oral controlled-release preparations. 2. Permeability enhancement of Eudragit RS coating led by the physicochemical interactions with organic acid. , 1996, Journal of pharmaceutical sciences.

[43]  S. Benita,et al.  Gradation of microcapsule wall porosity by deposition of polymer mixtures (Eudragit RL and Eudragit RS). Phase separation of polymer mixtures and effects of external media and conditions on release. , 1995, Journal of microencapsulation.

[44]  J. Wagner,et al.  Absorption of Flurbiprofen in the Fed and Fasted States , 1992, Pharmaceutical Research.

[45]  J. Kreuter Peroral administration of nanoparticles , 1991 .

[46]  H. Junginger,et al.  Intestinal transit of bioadhesive microspheres in an in situ loop in the rat—A comparative study with copolymers and blends based on poly(acrylic acid) , 1990 .

[47]  J. Forstner,et al.  The T84 human colonic adenocarcinoma cell line produces mucin in culture and releases it in response to various secretagogues. , 1990, The Biochemical journal.

[48]  R. Pignatello,et al.  Flurbiprofen release from eudragit RS and RL aqueous nanosuspensions: a kinetic study by DSC and dialysis experiments , 2008, AAPS PharmSciTech.

[49]  K. Murata,et al.  An Organic Acid-Induced Sigmoidal Release System for Oral Controlled-Release Preparations , 2004, Pharmaceutical Research.

[50]  Nl Oleinick,et al.  The phothobiology of photodynamic therapy : cellular tagets and mechanisms , 1998 .