The global precipitation of magnetospheric electrons into Titan’s upper atmosphere

Abstract We couple a two-stream electron transport model to a three-dimensional model of Titan’s plasma interaction to calculate the global precipitation of magnetospheric electrons into Titan’s atmosphere. We describe energy deposition rates from eleven simulations that vary the following parameters: relative orientation of the solar and magnetospheric ram directions, initial electron distribution, electron bounce times in Saturn’s magnetosphere, and whether we account for magnetic mirroring. Most of the energy from auroral electrons is deposited on the magnetospheric wake-side of Titan’s thermosphere, with peak rates between 25 and 35 eV cm−3 s−1, and the least amount of energy is deposited on the magnetospheric ram-side. We calculate globally averaged peak energy deposition rates of ∼13 eV cm−3 s−1 near 1200 km altitude, ∼1 eV cm−3 s−1 near 1200 km altitude, and ∼10 eV cm−3 s−1 near 1350 km altitude for electron distributions characteristic of Saturn’s plasma sheet, lobe, and magnetosheath, respectively. Globally averaged energy deposition rates are decreased by ∼70% when we assume that the electron bounce times are a factor of 10 shorter because the thermalization of magnetospheric electrons in Titan’s atmosphere erodes Saturn’s flux tubes over time scales comparable to the time it takes for electrons to bounce in Saturn’s magnetosphere. Magnetic mirroring further reduces the globally averaged energy deposition rates by ∼30% to 70%. The total power deposited in Titan’s thermosphere by magnetospheric electrons varies between 0.13 and 1.5 × 10 8 W for the eleven simulations analyzed, which is about an order of magnitude smaller than the power deposited by solar EUV (∼ 10 9 W for λ 800 A ) during the 2007 to 2009 solar minimum.

[1]  M. Brunger,et al.  Electron‐impact excitation heating rates in the atmosphere of Titan , 2010 .

[2]  C. Russell,et al.  The importance of thermal electron heating in Titan's ionosphere: Comparison with Cassini T34 flyby , 2011 .

[3]  D. Strobel,et al.  The CH4 structure in Titan's upper atmosphere revisited , 2012 .

[4]  K. Szego,et al.  Ion distributions of different Kronian plasma regions , 2011 .

[5]  C. Russell,et al.  Time‐dependent global MHD simulations of Cassini T32 flyby: From magnetosphere to magnetosheath , 2009 .

[6]  R. Winglee,et al.  Three‐dimensional multi‐fluid simulations of Titan's interaction with Saturn's magnetosphere: Comparisons with Cassini's T55 flyby , 2013 .

[7]  T. Cravens,et al.  Electrons in the ionosphere of Titan , 1992 .

[8]  M. Dougherty,et al.  Comparisons between MHD model calculations and observations of Cassini flybys of Titan , 2006 .

[9]  C. Russell,et al.  Titan's highly dynamic magnetic environment: A systematic survey of Cassini magnetometer observations from flybys TA–T62 , 2010 .

[10]  S. Brecht,et al.  The orientation of Titan’s dayside ionosphere and its effects on Titan’s plasma interaction , 2012, Earth, Planets and Space.

[11]  D. Strobel,et al.  EUV emission from Titan's upper atmosphere: Voyager 1 encounter , 1982 .

[12]  Thomas E. Cravens,et al.  Energetic ion precipitation at Titan , 2008 .

[13]  J. Wahlund,et al.  Electron temperature of Titan's sunlit ionosphere , 2006 .

[14]  J. Cui,et al.  Horizontal structures and dynamics of Titan's thermosphere , 2007 .

[15]  A. Ingersoll,et al.  Saturn’s thermal emission at 2.2-cm wavelength as imaged by the Cassini RADAR radiometer , 2013 .

[16]  F. Leblanc,et al.  Ejection of nitrogen from Titan's atmosphere by magnetospheric ions and pick-up ions , 2005 .

[17]  R. Jarvinen,et al.  Oxygen ions at Titan's exobase in a Voyager 1–type interaction from a hybrid simulation , 2007 .

[18]  J. Lilensten,et al.  Ionization processes in the atmosphere of Titan: I. Ionization in the whole atmosphere , 2009 .

[19]  N. Achilleos,et al.  The variability of Titan's magnetic environment , 2009 .

[20]  D. K. Davies,et al.  Measurements of Swarm Parameters and Derived Electron Collision Cross Sections in Methane , 1989 .

[21]  David T. Young,et al.  Ion densities and composition of Titan's upper atmosphere derived from the Cassini Ion Neutral Mass Spectrometer: Analysis methods and comparison of measured ion densities to photochemical model simulations , 2012 .

[22]  Emma J. Bunce,et al.  Saturn's magnetodisc current sheet , 2008 .

[23]  Panayotis Lavvas,et al.  Diurnal variations of Titan's ionosphere , 2009 .

[24]  J. Waite,et al.  Model-data comparisons for Titan's nightside ionosphere , 2009 .

[25]  P. Richards,et al.  EUVAC: A solar EUV Flux Model for aeronomic calculations , 1994 .

[26]  R. Yelle,et al.  Composition and chemistry of Titan's thermosphere and ionosphere , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  A. Coates,et al.  Auroral electron precipitation and flux tube erosion in Titan’s upper atmosphere , 2013 .

[28]  Robert E. Johnson,et al.  Investigation of energetic proton penetration in Titan's atmosphere using the Cassini INCA instrument , 2009 .

[29]  J. Luhmann,et al.  Ion Distributions in Saturn s Magnetosphere Near Titan During Non-Voyager Interaction Conditions , 2005 .

[30]  Robert E. Johnson,et al.  Titan's thermospheric response to various plasma environments , 2011 .

[31]  Xun Zhu,et al.  Titan's upper atmosphere - Structure and ultraviolet emissions , 1992 .

[32]  D. Young,et al.  Discrete classification and electron energy spectra of Titan's varied magnetospheric environment , 2009 .

[33]  Robert A. West,et al.  Titan airglow during eclipse , 2012 .

[34]  J. Kunc,et al.  Dissociation and ionization of the methane molecule by nonrelativistic electrons including the near threshold region , 2008 .

[35]  G. Siscoe,et al.  The plumes of Titan , 1982 .

[36]  D. Gurnett,et al.  Titan's magnetospheric interaction , 2007 .

[37]  M. Stevens,et al.  Titan airglow spectra from Cassini Ultraviolet Imaging Spectrograph (UVIS): EUV analysis , 2007 .

[38]  J. Wahlund,et al.  On the ionospheric structure of Titan , 2009 .

[39]  R. Yelle,et al.  The thermal structure of Titan’s upper atmosphere, II: Energetics , 2011 .

[40]  Ronan Modolo,et al.  A global hybrid model for Titan's interaction with the Kronian plasma: Application to the Cassini Ta flyby , 2008 .

[41]  M. Stevens,et al.  The production of Titan's ultraviolet nitrogen airglow , 2011 .

[42]  E. Harnett,et al.  Regulation of the centrifugal interchange cycle in Saturn's inner magnetosphere , 2009 .

[43]  D. Larson,et al.  Simulation of the Saturnian magnetospheric interaction with Titan , 2000 .

[44]  I. Mueller-Wodarg,et al.  The Vertical Structure of Titan's Upper Atmosphere , 2006 .

[45]  F. M. Neubauer,et al.  Nonlinear standing Alfvén wave current system at Io: Theory , 1980 .

[46]  D. Delapp,et al.  The plasma environment of Titan: The magnetodisk of Saturn near the encounters as derived from ion densities measured by the Cassini/CAPS plasma spectrometer , 2011 .

[47]  W. Ip,et al.  Titan's ionosphere: Model comparisons with Cassini Ta data , 2005 .

[48]  A. Nagy,et al.  Photoelectron fluxes in the ionosphere , 1970 .

[49]  J. Wahlund,et al.  The thermal structure of Titan's upper atmosphere, I: Temperature profiles from Cassini INMS observations , 2013 .

[50]  K. Szego,et al.  Upstream of Saturn and Titan , 2011 .

[51]  Robert E. Johnson,et al.  SUPRATHERMAL NITROGEN ATOMS AND MOLECULES IN TITAN'S CORONA , 2001 .

[52]  Robert E. Johnson,et al.  Energy deposition of pickup ions and heating of Titan's atmosphere , 2005 .

[53]  I. Dandouras,et al.  Multi-instrument analysis of electron populations in Saturn's magnetosphere , 2008 .

[54]  Roger V. Yelle,et al.  Ion chemistry and N-containing molecules in Titan's upper atmosphere , 2007 .

[55]  J. Waite,et al.  Waves and horizontal structures in Titan's thermosphere , 2006 .

[56]  R. P. Singhal,et al.  Some molecular nitrogen emission from titan solar EUV and magnetospheric interaction , 1986 .

[57]  D. Shemansky,et al.  Analysis of electron impact ionization properties of methane , 2006 .

[58]  J. Waite,et al.  Heating Titan's upper atmosphere , 2008 .

[59]  Paul B. Hays,et al.  The auroral 6300 Å emission: Observations and modeling , 1988 .

[60]  J. Wahlund,et al.  Energetics of Titan's ionosphere: Model comparisons with Cassini data , 2011 .

[61]  Nicholas Achilleos,et al.  Titan's Magnetic Field Signature During the First Cassini Encounter , 2005, Science.

[62]  R. Winglee,et al.  Titan at the edge: 2. A global simulation of Titan exiting and reentering Saturn's magnetosphere at 13:16 Saturn local time , 2011 .

[63]  T. Bagdonat,et al.  Plasma environment of Titan: a 3-D hybrid simulation study , 2006 .

[64]  C. Latimer,et al.  THE IMPLANTATION AND INTERACTIONS OF O+ IN TITAN'S ATMOSPHERE: LABORATORY MEASUREMENTS OF COLLISION-INDUCED DISSOCIATION OF N2 AND MODELING OF POSITIVE ION FORMATION , 2009 .

[65]  Yukikazu Itikawa,et al.  Cross Sections for Electron Collisions with Nitrogen Molecules , 2006 .

[66]  J. H. Waite,et al.  Composition of Titan's ionosphere , 2006 .

[67]  W. Ip,et al.  Exospheric heating by pickup ions at Titan , 2008 .