Generalized Cubic Spline Fractal Interpolation Functions

We construct a generalized Cr-Fractal Interpolation Function (Cr-FIF) f by prescribing any combination of r values of the derivatives f(k), k=1,2,\dots,r, at boundary points of the interval I = [x0,xN]. Our approach to construction settles several questions of Barnsley and Harrington [J. Approx Theory, 57 (1989), pp. 14-34] when construction is not restricted to prescribing the values of $f^{(k)}$ at only the initial endpoint of the interval $I.$ In general, even in the case when r equations involving $f^{(k)}(x_0)$ and $f^{(k)}(x_N)$, $k=1,2,\dots,r,$ are prescribed, our method of construction of the $C^r$-FIF works equally well. In view of wide ranging applications of the classical cubic splines in several mathematical and engineering problems, the explicit construction of cubic spline FIF $f_{\Delta}(x)$ through moments is developed. It is shown that the sequence $\{f_{\Delta_k}(x)\}$ converges to the defining data function $\Phi(x)$ on two classes of sequences of meshes at least as rapidly as the square of the mesh norm $\| \Delta_k \|$ approaches to zero, provided that $\Phi^{(r)}(x)$ is continuous on I for r=2,3, or 4.

[1]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[2]  Gary D. Knott,et al.  Interpolating Cubic Splines , 2001, J. Approx. Theory.

[3]  Lyman P. Hurd,et al.  Fractal image compression , 1993 .

[4]  M. Barnsley,et al.  Recurrent iterated function systems , 1989 .

[5]  E. Lutton,et al.  FRACTAL MODELING OF SPEECH SIGNALS , 1994 .

[6]  George Sugihara,et al.  Fractals: A User's Guide for the Natural Sciences , 1993 .

[7]  R. P. Tewarson,et al.  Error bounds for spline-on-spline interpolation , 1982 .

[8]  Mikell P. Groover,et al.  CAD/CAM: Computer-Aided Design and Manufacturing , 1983 .

[9]  J. L. Walsh,et al.  The theory of splines and their applications , 1969 .

[10]  Monson H. Hayes,et al.  Using iterated function systems to model discrete sequences , 1992, IEEE Trans. Signal Process..

[11]  M. V. Sebastián,et al.  Some results of convergence of cubic spline fractal interpolation functions. , 2003 .

[12]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[13]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[14]  Michael F. Barnsley,et al.  Fractal functions and interpolation , 1986 .

[15]  Michael F. Barnsley,et al.  Hidden variable fractal interpolation functions , 1989 .

[16]  Peter R. Massopust Chapter 7 – Fractal Functions and Wavelets , 1994 .

[17]  P. Massopust Fractal Functions, Fractal Surfaces, and Wavelets , 1995 .

[18]  Rüdiger Dillmann,et al.  Computer-Aided Design and Manufacturing , 1986, Symbolic Computation.

[19]  Michael F. Barnsley,et al.  The calculus of fractal interpolation functions , 1989 .

[20]  I. Good,et al.  Fractals: Form, Chance and Dimension , 1978 .

[21]  W. Weston Meyer,et al.  Optimal error bounds for cubic spline interpolation , 1976 .

[22]  Sanda Micula,et al.  Handbook of Splines , 1998 .