The continuous orbifold of N = 2 minimal model holography

: For the N = 2 Kazama-Suzuki models that appear in the duality with a higher spin theory on AdS 3 it is shown that the large level limit can be interpreted as a continuous orbifold of 2 N free bosons and fermions by the group U( N ). In particular, we show that the subset of coset representations that correspond to the perturbative higher spin degrees of freedom are precisely described by the untwisted sector of this U( N ) orbifold. We furthermore identify the twisted sector ground states of the orbifold with specific coset representations, and give various pieces of evidence in favour of this identification.

[1]  R. Gopakumar,et al.  Higher spins & strings , 2014, 1406.6103.

[2]  T. Creutzig,et al.  Higher spin AdS3 holography with extended supersymmetry , 2014, 1406.1521.

[3]  M. Beccaria,et al.  The large N = 4 superconformal W ∞ algebra , 2014 .

[4]  R. Gopakumar,et al.  Large N = 4 holography , 2013 .

[5]  C. Candu,et al.  On the coset duals of extended higher spin theories , 2013, 1312.5240.

[6]  C. Restuccia Limit theories and continuous orbifolds , 2013, 1310.6857.

[7]  T. Creutzig,et al.  Extended higher spin holography and Grassmannian models , 2013, 1306.0466.

[8]  S. Fredenhagen,et al.  The geometry of the limit of N = 2 minimal models , 2012, 1208.6136.

[9]  R. Gopakumar,et al.  Minimal model holography , 2012, 1207.6697.

[10]  C. Peng,et al.  Symmetries of holographic super-minimal models , 2012, 1203.5768.

[11]  X. Yin,et al.  The higher spin/vector model duality , 2012, 1208.4036.

[12]  C. Ahn The large N ’t Hooft limit of Kazama-Suzuki model , 2012, 1206.0054.

[13]  S. Fredenhagen,et al.  The limit of N = (2, 2) superconformal minimal models , 2012, 1204.0446.

[14]  Gustavo Lucena Gómez,et al.  Super-W∞ asymptotic symmetry of higher-spin AdS3 supergravity , 2012, 1203.5152.

[15]  M. Gaberdiel,et al.  Supersymmetric holography on AdS3 , 2012, 1203.1939.

[16]  M. Gaberdiel,et al.  Limits of minimal models and continuous orbifolds , 2011, 1112.1708.

[17]  T. Creutzig,et al.  Higher spin AdS3 supergravity and its dual CFT , 2011, 1111.2139.

[18]  M. Gaberdiel,et al.  Minimal model holography for SO(2N) , 2011, 1106.2634.

[19]  S. Fredenhagen Boundary conditions in Toda theories and minimal models , 2010, 1012.0485.

[20]  R. Gopakumar,et al.  An AdS_3 Dual for Minimal Model CFTs , 2010, 1011.2986.

[21]  E. Sezgin,et al.  Holography in 4D (super) higher spin theories and a test via cubic scalar couplings , 2003, hep-th/0305040.

[22]  D. Roggenkamp,et al.  Limits and Degenerations of Unitary Conformal Field Theories , 2003, hep-th/0308143.

[23]  M.A.Vasiliev Nonlinear Equations for Symmetric Massless Higher Spin Fields in $(A)dS_d$ , 2003, hep-th/0304049.

[24]  A. Polyakov,et al.  AdS dual of the critical O(N) vector model , 2002, hep-th/0210114.

[25]  S. Wadia,et al.  Microscopic formulation of black holes in string theory , 2002, hep-th/0203048.

[26]  S. Mathur,et al.  Three-Point Functions for MN/SN Orbifolds¶with?= 4 Supersymmetry , 2001, hep-th/0103169.

[27]  I. Runkel,et al.  A non-rational CFT with c = 1 as a limit of minimal models , 2001, hep-th/0107118.

[28]  M. Vasiliev,et al.  3D Higher-Spin Gauge Theories with Matter , 1998, hep-th/9812242.

[29]  M. Vasiliev,et al.  Higher-spin gauge interactions for massive matter fields in 3D AdS space-time , 1998, hep-th/9806236.

[30]  I. Tamm 3d Higher-spin Gauge Theories with Matter † , 1998 .

[31]  M. Gaberdiel Fusion of twisted representations , 1996, hep-th/9607036.

[32]  Y. Kazama,et al.  New N=2 Superconformal Field Theories and Superstring Compactification , 1989 .

[33]  G. Mussardo,et al.  Fusion rules, four-point functions and discrete symmetries of N = 2 superconformal models , 1989 .

[34]  Y. Kazama,et al.  Characterization of N=2 superconformal models generated by the coset space method , 1989 .

[35]  G. Mussardo,et al.  N=2 SUPERCONFORMAL MINIMAL MODELS , 1989 .

[36]  R. King,et al.  Branching rules for classical Lie groups using tensor and spinor methods , 1975 .

[37]  M. Whippman Branching Rules for Simple Lie Groups , 1965 .

[38]  E. Condon The Theory of Groups and Quantum Mechanics , 1932 .