Evolution of Neocortex

In this chapter I shall attempt to derive the outlines of a theory of neocortical evolution from a series of observations based mainly on the anatomy and physiology of cerebral cortex in living animals. Such an exercise in evolutionary inference is by its nature a speculative enterprise. Hopefully, it will serve to guide future comparative, developmental and biophysical studies that might shed some additional light on this intriguing but inaccessible topic. To illustrate organizational features of cortex, I have drawn examples mainly from visual cortex.

[1]  Robert L. Carroll,et al.  Vertebrate Paleontology and Evolution , 1988 .

[2]  R. Schusterman,et al.  Dolphin Cognition and Behavior: A Comparative Approach , 1986 .

[3]  G. Crile,et al.  A Record of the Body Weight and Certain Organ and Gland Weights of 3690 Animals , 1940 .

[4]  W R Engels,et al.  Gene duplication. , 1981, Science.

[5]  A. Joyner,et al.  Expression of the homeo box-containing gene En-2 delineates a specific region of the developing mouse brain. , 1988, Genes & development.

[6]  G. Shepherd,et al.  Logic operations are properties of computer-simulated interactions between excitable dendritic spines , 1987, Neuroscience.

[7]  R. L. Holmes Atlas of the Frog's Brain. , 1969 .

[8]  William McGinnis,et al.  Spatial restriction in expression of a mouse homoeo box locus within the central nervous system , 1986, Nature.

[9]  S. Mcconnell Development and decision-making in the mammalian cerebral cortex , 1988, Brain Research Reviews.

[10]  P. Stephen,et al.  THE MAIN AFFERENT FIBER SYSTEMS OF THE CEREBRAL CORTEX IN PRIMATES , 1934 .

[11]  H. Frahm,et al.  Comparison of brain structure volumes in Insectivora and Primates. I. Neocortex. , 1982, Journal fur Hirnforschung.

[12]  Julian Lewis Genes and segmentation , 1989, Nature.

[13]  H. Meinhardt Models of biological pattern formation , 1982 .

[14]  M. Stoneking,et al.  Mitochondrial DNA and human evolution , 1987, Nature.

[15]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[16]  J. Kaas,et al.  A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[17]  D. C. Essen,et al.  Visual areas of the mammalian cerebral cortex. , 1979 .

[18]  D. Fitzpatrick,et al.  Laminar organization of geniculocortical projections in Galago senegalensis and Aotus trivirgatus , 1985, The Journal of comparative neurology.

[19]  S. Petersen,et al.  Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus): a quantitative comparison of medial, dorsomedial, dorsolateral, and middle temporal areas. , 1981, Journal of neurophysiology.

[20]  J. Pettigrew Binocular visual processing in the owl’s telencephalon , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[21]  R. Macarthur,et al.  The Theory of Island Biogeography , 1969 .

[22]  Lawrence T. Post,et al.  The Main Afferent Fiber Systems of the Cerebral Cortex in Primates , 1933 .

[23]  R. Krumlauf,et al.  Segmental expression of Hox-2 homoeobox-containing genes in the developing mouse hindbrain , 1989, Nature.

[24]  V. Caviness,et al.  Obstructed neuronal migration along radial glial fibers in the neocortex of the reeler mouse: a Golgi-EM analysis. , 1982, Brain research.

[25]  R. Gattass,et al.  The projection of the opossum's visual field on the cerebral cortex , 1978, The Journal of comparative neurology.

[26]  S. Zeki Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelengths and colours , 1983, Neuroscience.

[27]  M. Akam,et al.  The molecular basis for metameric pattern in the Drosophila embryo. , 1987, Development.

[28]  L. Radinsky The oldest primate endocast. , 1967, American journal of physical anthropology.

[29]  E. Lewis Pseudoallelism and gene evolution. , 1951, Cold Spring Harbor symposia on quantitative biology.

[30]  E H Land,et al.  An alternative technique for the computation of the designator in the retinex theory of color vision. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Philip S. Ulinski Functional Architecture of Turtle Visual Cortex1 , 1988 .

[32]  M. Rowe,et al.  The organization of the sensory and motor areas of cerebral cortex in the platypus (Ornithorhynchus anatinus) , 1977, The Journal of comparative neurology.

[33]  M. Midgley Sociobiology. , 1984, Journal of medical ethics.

[34]  P. Ingham The molecular genetics of embryonic pattern formation in Drosophila , 1988, Nature.

[35]  E. Lewis A gene complex controlling segmentation in Drosophila , 1978, Nature.

[36]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[37]  L. Haberly Neuronal circuitry in olfactory cortex: anatomy and functional implications , 1985 .

[38]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[39]  P. Goldman-Rakic,et al.  Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. , 1986, Science.

[40]  J. Tigges,et al.  Complementary laminar terminations of afferents to area 17 originating in area 18 and in the lateral geniculate nucleus in squirrel monkey , 1977, The Journal of comparative neurology.

[41]  J. Allman Maps in Context: Some Analogies Between Visual Cortical and Genetic Maps , 1987 .

[42]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  J. Lund,et al.  The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase , 1975, The Journal of comparative neurology.

[44]  M. Scott Homoeotic gene transcripts in the neural tissue of insects , 1984, Trends in Neurosciences.

[45]  P. Rakic Specification of cerebral cortical areas. , 1988, Science.

[46]  F. Palmer-Hill,et al.  Expression of a homeo domain protein in noncontact-inhibited cultured cells and postmitotic neurons. , 1987, Genes & development.

[47]  T. Powell,et al.  The basic uniformity in structure of the neocortex. , 1980, Brain : a journal of neurology.

[48]  W J Gehring,et al.  The molecular basis of development. , 1985, Scientific American.

[49]  D J Ingle,et al.  The goldfish as a retinex animal. , 1985, Science.

[50]  L. Palmer,et al.  Multiple Cortical Visual Areas , 1981 .

[51]  William McGinnis,et al.  A homologous protein-coding sequence in drosophila homeotic genes and its conservation in other metazoans , 1984, Cell.

[52]  Leslie G. Ungerleider,et al.  Contour, color and shape analysis beyond the striate cortex , 1985, Vision Research.

[53]  J. Kaas,et al.  Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[54]  G. R. Martin Nomenclature for homoeobox-containing genes , 1987, Nature.

[55]  W. McGinnis Homeo box sequences of the Antennapedia class are conserved only in higher animal genomes. , 1985, Cold Spring Harbor symposia on quantitative biology.

[56]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[57]  H. Elias,et al.  Surface Areas of the Cerebral Cortex of Mammals Determined by Stereological Methods , 1969, Science.

[58]  A. Laughon,et al.  Sequence of a Drosophila segmentation gene: protein structure homology with DNA-binding proteins , 1984, Nature.

[59]  Sean B. Carroll,et al.  The segmentation and homeotic gene network in early Drosophila development , 1987, Cell.

[60]  William K. Gregory,et al.  Reduplication in Evolution , 1935, The Quarterly Review of Biology.

[61]  W. C. Hall,et al.  Cortical visual areas I and II in the hedgehog: relation between evoked potential maps and architectonic subdivisions. , 1970, Journal of neurophysiology.

[62]  E Seifert,et al.  Analysis of Krüppel protein distribution during early Drosophila development reveals posttranscriptional regulation , 1987, Cell.

[63]  E. Müller Basal metabolic rates in primates--the possible role of phylogenetic and ecological factors. , 1985, Comparative biochemistry and physiology. A, Comparative physiology.

[64]  A F Bennett,et al.  Endothermy and activity in vertebrates. , 1979, Science.

[65]  H Haug,et al.  Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). , 1987, The American journal of anatomy.

[66]  G. Struhl,et al.  A molecular gradient in early Drosophila embryos and its role in specifying the body pattern , 1986, Nature.