Colloidally stable silicon nanocrystals with near-infrared photoluminescence for biological fluorescence imaging.

Luminescent silicon nanocrystals (ncSi) are showing great promise as photoluminescent tags for biological fluorescence imaging, with size-dependent emission that can be tuned into the near-infrared biological window and reported lack of toxicity. Here, colloidally stable ncSi with NIR photoluminescence are synthesized from (HSiO1.5)n sol-gel glasses and are used in biological fluorescence imaging. Modifications to the thermal processing conditions of (HSiO1.5)n sol-gel glasses, the development of new ncSi oxide liberation chemistry, and an appropriate alkyl surface passivation scheme lead to the formation of colloidally stable ncSi with photoluminescence centered at 955 nm. Water solubility and biocompatibility are achieved through encapsulation of the hydrophobic alkyl-capped ncSi within PEG-terminated solid lipid nanoparticles. Their applicability to biological imaging is demonstrated with the in-vitro fluorescence labelling of human breast tumor cells.

[1]  T. Mihaljevic,et al.  Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping , 2004, Nature Biotechnology.

[2]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[3]  Huibi Xu,et al.  Preparation and characterization of novel fluorescent nanocomposite particles: CdSe/ZnS core-shell quantum dots loaded solid lipid nanoparticles. , 2008, Journal of biomedical materials research. Part A.

[4]  Richard K. Baldwin,et al.  Solution reduction synthesis of surface stabilized silicon nanoparticles. , 2002, Chemical communications.

[5]  K. Mäder,et al.  Solid lipid nanoparticles: production, characterization and applications. , 2001, Advanced drug delivery reviews.

[6]  G. Stucky,et al.  Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. , 2011, Nature nanotechnology.

[7]  R. Elliman,et al.  Effect of Hydrogen on the Photoluminescence of Si Nanocrystals Embedded in a SiO 2 Matrix , 2001 .

[8]  R. Müller,et al.  Solid lipid nanoparticles for parenteral drug delivery. , 2004, Advanced drug delivery reviews.

[9]  Zafar Iqbal,et al.  Raman scattering from small particle size polycrystalline silicon , 1981 .

[10]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[11]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[12]  J. Manias,et al.  A novel doxorubicin-mitomycin C co-encapsulated nanoparticle formulation exhibits anti-cancer synergy in multidrug resistant human breast cancer cells , 2008, Breast Cancer Research and Treatment.

[13]  N. Billinton,et al.  Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. , 2001, Analytical biochemistry.

[14]  Shimon Weiss,et al.  Advances in fluorescence imaging with quantum dot bio-probes. , 2006, Biomaterials.

[15]  Friedrich Huisken,et al.  Improved one-phonon confinement model for an accurate size determination of silicon nanocrystals , 1999 .

[16]  Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation. , 2010, Nano letters.

[17]  S. Gambhir,et al.  Molecular imaging in living subjects: seeing fundamental biological processes in a new light. , 2003, Genes & development.

[18]  C. Choy,et al.  Dielectric properties and abnormal C-V characteristics of Ba[sub 0.5]Sr[sub 0.5]TiO₃-Bi[sub 1.5]ZnNb[sub 1.5]O[sub 7] composite thin films grown on MgO (001) substrates by pulsed laser deposition , 2006 .

[19]  Robert Elliman,et al.  Effect of particle size on the photoluminescence from hydrogen passivated Si nanocrystals in SiO2 , 2001 .

[20]  William L. Wilson,et al.  Electronic spectroscopy and photophysics of Si nanocrystals. Relationship to bulk c-Si and porous Si , 1995 .

[21]  Jillian M Buriak,et al.  Organometallic chemistry on silicon and germanium surfaces. , 2002, Chemical reviews.

[22]  M. Dahan,et al.  Time-gated biological imaging by use of colloidal quantum dots. , 2001, Optics letters.

[23]  P. J. French,et al.  The effect of additives on the adsorption properties of porous silicon , 1997 .

[24]  Robert Elliman,et al.  Photoluminescence from Si nanocrystals in silica: The effect of hydrogen , 2001 .

[25]  S. Kauzlarich,et al.  Size and Spectroscopy of Silicon Nanoparticles Prepared via Reduction of SiCl4 , 2006 .

[26]  R. Tilley,et al.  Chemical reactions on surface molecules attached to silicon quantum dots. , 2010, Journal of the American Chemical Society.

[27]  M. Bawendi,et al.  (CdSe)ZnS Core-Shell Quantum Dots - Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 1997 .

[28]  J. Veinot,et al.  Synthesis, surface functionalization, and properties of freestanding silicon nanocrystals. , 2006, Chemical communications.

[29]  X. Wu,et al.  Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. , 2007, Advanced drug delivery reviews.

[30]  Eli Ruckenstein,et al.  Water-Soluble Poly(acrylic acid) Grafted Luminescent Silicon Nanoparticles and Their Use as Fluorescent Biological Staining Labels , 2004 .

[31]  M. C. Mancini,et al.  Bioimaging: second window for in vivo imaging. , 2009, Nature nanotechnology.

[32]  Louis E. Brus,et al.  Luminescence of silicon materials : chains, sheets, nanocrystals, nanowires, microcrystals, and porous silicon , 1994 .

[33]  Mark T. Swihart,et al.  Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum , 2003 .

[34]  W Mehnert,et al.  Solid lipid nanoparticles (SLN) for controlled drug delivery--drug release and release mechanism. , 1998, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[35]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[36]  Isao Matsui,et al.  Micro-emulsion synthesis of monodisperse surface stabilized silicon nanocrystals. , 2005, Chemical communications.

[37]  J. Kelly,et al.  An investigation into near-UV hydrosilylation of freestanding silicon nanocrystals. , 2010, ACS nano.

[38]  G. Spierings Wet chemical etching of silicate glasses in hydrofluoric acid based solutions , 1993 .

[39]  J. L. Hueso,et al.  Alkyl passivation and amphiphilic polymer coating of silicon nanocrystals for diagnostic imaging. , 2010, Small.

[40]  Xide Xie,et al.  Raman shifts in Si nanocrystals , 1996 .

[41]  Ken-Tye Yong,et al.  Biocompatible luminescent silicon quantum dots for imaging of cancer cells. , 2008, ACS nano.

[42]  Susan M. Kauzlarich,et al.  Synthesis of Alkyl-Terminated Silicon Nanoclusters by a Solution Route , 1999 .

[43]  S. Bhatia,et al.  Probing the Cytotoxicity Of Semiconductor Quantum Dots. , 2004, Nano letters.

[44]  Rebekah Drezek,et al.  Water-soluble quantum dots for biomedical applications. , 2006, Biochemical and biophysical research communications.

[45]  C. Hessel,et al.  Hydrogen Silsesquioxane: A Molecular Precursor for Nanocrystalline Si−SiO2 Composites and Freestanding Hydride-Surface-Terminated Silicon Nanoparticles , 2006 .

[46]  J. Rao,et al.  Fluorescence imaging in vivo: recent advances. , 2007, Current opinion in biotechnology.

[47]  A. G. Cullis,et al.  The structural and luminescence properties of porous silicon , 1997 .

[48]  J. Kelly,et al.  Influence of HSiO1.5 Sol−Gel Polymer Structure and Composition on the Size and Luminescent Properties of Silicon Nanocrystals , 2009 .

[49]  C. Hessel,et al.  An investigation of the formation and growth of oxide-embedded silicon nanocrystals in hydrogen silsesquioxane-derived nanocomposites , 2007 .

[50]  A. Meldrum,et al.  Nonresonant carrier tunneling in arrays of silicon nanocrystals , 2006 .

[51]  Ken-Tye Yong,et al.  Two- and three-photon absorption and frequency upconverted emission of silicon quantum dots. , 2008, Nano letters.

[52]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[53]  J. Veinot,et al.  Exploration of organic acid chain length on water-soluble silicon quantum dot surfaces. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[54]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[55]  Vesa-Pekka Lehto,et al.  Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. , 2010, ACS nano.

[56]  H. Datta,et al.  Alkyl-Capped Silicon Nanocrystals Lack Cytotoxicity and have Enhanced Intracellular Accumulation in Malignant Cells via Cholesterol-Dependent Endocytosis , 2008, Small.

[57]  Uwe R. Kortshagen,et al.  Silicon nanocrystals with ensemble quantum yields exceeding 60 , 2006 .

[58]  Akiyoshi Hoshino,et al.  Water-soluble photoluminescent silicon quantum dots. , 2005, Angewandte Chemie.

[59]  R. Lockwood,et al.  Silicon Nanocrystals: Fundamental Theory and Implications for Stimulated Emission , 2008 .

[60]  U. Kortshagen,et al.  High-yield plasma synthesis of luminescent silicon nanocrystals. , 2005, Nano letters.

[61]  Kirk J. Ziegler,et al.  Highly luminescent silicon nanocrystals with discrete optical transitions. , 2001, Journal of the American Chemical Society.

[62]  Hong Ding,et al.  Biocompatible magnetofluorescent probes: luminescent silicon quantum dots coupled with superparamagnetic iron(III) oxide. , 2010, ACS nano.

[63]  Richard H. Friend,et al.  An improved experimental determination of external photoluminescence quantum efficiency , 1997 .

[64]  Michael J Sailor,et al.  Biodegradable luminescent porous silicon nanoparticles for in vivo applications. , 2009, Nature materials.