The Color Selection of Quasars from Redshifts 5 to 10: Cloning and Discovery

We present simulations of quasar colors, magnitudes, and numbers at redshifts 5 < z < 10 based on our discovery of 10 new high-redshift quasars and the cloning of lower redshift Sloan Digital Sky Survey (SDSS) quasars. The 10 quasars have redshifts ranging from z = 4.7 to 5.3 and i magnitudes of 20.21–20.94. The natural diversity of spectral features in the cloned sample allows more realistic simulation of the quasar locus width than was previously possible with synthetic template spectra. Colors are generated for the z > 6 epoch, taking advantage of the new UKIRT Infrared Deep Sky Survey near-infrared filter set, and we examine the redshift intervals of maximum productivity, discussing color selection and survey depth issues. On the basis of the SDSS sample, we find that the surface density of z > 4.7 quasars increases by a factor of 3 times by extending 0.7 i magnitudes deeper than the SDSS spectroscopic survey limit of i = 20.2; correspondingly, we predict a total of ∼400 faint quasars in the SDSS main area that have redshift z > 4.7 and magnitudes i < 20.9.

[1]  R. Romani,et al.  Q0906+6930: The Highest Redshift Blazar , 2004, astro-ph/0406252.

[2]  E. al.,et al.  Current Performance and On-Going Improvements of the 8.2 m Subaru Telescope , 2004, astro-ph/0405012.

[3]  Oxford,et al.  The 2dF QSO Redshift Survey – XII. The spectroscopic catalogue and luminosity function , 2004, astro-ph/0403040.

[4]  et al,et al.  Near-Infrared Photometry and Spectroscopy of L and T Dwarfs: The Effects of Temperature, Clouds, and Gravity , 2004, astro-ph/0402451.

[5]  R. Nichol,et al.  The Sloan Digital Sky Survey Quasar Catalog. II. First Data Release , 2003, astro-ph/0308443.

[6]  V. Narayanan,et al.  A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. II. Discovery of Three Additional Quasars at z > 6 , 2003, astro-ph/0301135.

[7]  Ž. Ivezić,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[8]  Mamoru Doi,et al.  Estimating Fixed-Frame Galaxy Magnitudes in the Sloan Digital Sky Survey , 2002, astro-ph/0205243.

[9]  Johns Hopkins University,et al.  Characterization of M, L, and T Dwarfs in the Sloan Digital Sky Survey , 2002, astro-ph/0204065.

[10]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.

[11]  et al,et al.  Infrared Photometry of Late-M, L, and T Dwarfs , 2001, astro-ph/0108435.

[12]  M. Gilfanov,et al.  Lighthouses of the universe : the most luminous celestial objects and their use for cosmology : proceedings of the MPA/ESO/MPE/USM Joint Astronomy Conference held in Garching, Germany, 6-10 August 2001 , 2002 .

[13]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[14]  V. Narayanan,et al.  A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ∼ 6 , 2001, astro-ph/0108063.

[15]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[16]  Scott M. Croom,et al.  The 2dF QSO Redshift Survey — I. The optical luminosity function of quasi-stellar objects , 2000 .

[17]  Kentaro Aoki,et al.  FOCAS: faint object camera and spectrograph for the Subaru Telescope , 2000, Astronomical Telescopes and Instrumentation.

[18]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[19]  Scott M. Croom,et al.  The 2dF QSO Redshift Survey - I. The Optical QSO Luminosity Function , 2000 .

[20]  A. Szalay,et al.  Five High-Redshift Quasars Discovered in Commissioning Imaging Data of the Sloan Digital Sky Survey , 2000, astro-ph/0005247.

[21]  R. Nichol,et al.  High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data , 1999, astro-ph/0103228.

[22]  Robert Lupton,et al.  A Modified Magnitude System that Produces Well-Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-Noise Ratio Measurements , 1999, astro-ph/9903081.

[23]  R. Bouwens,et al.  Cloning Hubble Deep Fields. II. Models for Evolution by Bright Galaxy Image Transformation , 1998, astro-ph/9810396.

[24]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[25]  F. Allard,et al.  The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10,000 K , 1998, astro-ph/9807286.

[26]  Phillip J. MacQueen,et al.  Hobby-Eberly Telescope low-resolution spectrograph , 1998, Astronomical Telescopes and Instrumentation.

[27]  R. Bouwens,et al.  Cloning Hubble Deep Fields. I. A Model-independent Measurement of Galaxy Evolution , 1997, astro-ph/9710291.

[28]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[29]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[30]  F. Allard,et al.  Model atmospheres for M (sub)dwarf stars. 1: The base model grid , 1995, astro-ph/9601150.

[31]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[32]  Bruce A. Peterson,et al.  On the Density of Neutral Hydrogen in Intergalactic Space , 1965 .