On the infinite divisibility of some skewed symmetric distributions

[1]  R. Horn,et al.  On multivariate infinitely divisible distributions , 1975 .

[2]  Fw Fred Steutel,et al.  Infinite divisibility in theory and practice , 1979 .

[3]  A. Azzalini A class of distributions which includes the normal ones , 1985 .

[4]  N. Henze A Probabilistic Representation of the 'Skew-normal' Distribution , 1986 .

[5]  A. Azzalini,et al.  The multivariate skew-normal distribution , 1996 .

[6]  On the Self-Decomposability of the Half-Cauchy Distribution☆ , 1998 .

[7]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[8]  Some Skewed Multivariate Distributions , 2000 .

[9]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[10]  O. Barndorff-Nielsen,et al.  Lévy processes : theory and applications , 2001 .

[11]  M. Genton,et al.  A SKEW-SYMMETRIC REPRESENTATION OF MULTIVARIATE DISTRIBUTIONS , 2002 .

[12]  F. Steutel,et al.  Infinite Divisibility of Probability Distributions on the Real Line , 2003 .

[13]  G. González-Farías,et al.  SKEW-NORMALITY IN STOCHASTIC FRONTIER ANALYSIS , 2003 .

[14]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[15]  Marc G. Genton,et al.  Skew-elliptical distributions and their applications : a journey beyond normality , 2004 .

[16]  Arjun K. Gupta,et al.  The Closed Skew-Normal Distribution , 2004 .

[17]  Samuel Kotz,et al.  Multivariate T-Distributions and Their Applications , 2004 .