THE INTERSTELLAR MAGNETIC FIELD CLOSE TO THE SUN. II.

The magnetic field in the local interstellar medium (ISM) provides a key indicator of the galactic environment of the Sun and influences the shape of the heliosphere. We have studied the interstellar magnetic field (ISMF) in the solar vicinity using polarized starlight for stars within 40 pc of the Sun and 90 Degree-Sign of the heliosphere nose. In Frisch et al. (Paper I), we developed a method for determining the local ISMF direction by finding the best match to a group of interstellar polarization position angles obtained toward nearby stars, based on the assumption that the polarization is parallel to the ISMF. In this paper, we extend the analysis by utilizing weighted fits to the position angles and by including new observations acquired for this study. We find that the local ISMF is pointed toward the galactic coordinates l, b =47 Degree-Sign {+-} 20 Degree-Sign , 25 Degree-Sign {+-} 20 Degree-Sign . This direction is close to the direction of the ISMF that shapes the heliosphere, l, b =33 Degree-Sign {+-} 4 Degree-Sign , 55 Degree-Sign {+-} 4 Degree-Sign , as traced by the center of the 'Ribbon' of energetic neutral atoms discovered by the Interstellar Boundary Explorer (IBEX) mission.more » Both the magnetic field direction and the kinematics of the local ISM are consistent with a scenario where the local ISM is a fragment of the Loop I superbubble. A nearby ordered component of the local ISMF has been identified in the region l Almost-Equal-To 0 Degree-Sign {yields} 80 Degree-Sign and b Almost-Equal-To 0 Degree-Sign {yields} 30 Degree-Sign , where PlanetPol data show a distance-dependent increase of polarization strength. The ordered component extends to within 8 pc of the Sun and implies a weak curvature in the nearby ISMF of {approx}0.{sup 0}25 pc{sup -1}. This conclusion is conditioned on the small sample of stars available for defining this rotation. Variations from the ordered component suggest a turbulent component of {approx}23 Degree-Sign . The ordered component and standard relations between polarization, color excess, and H{sup o} column density predict a reasonable increase of N(H) with distance in the local ISM. The similarity of the ISMF directions traced by the polarizations, the IBEX Ribbon, and pulsars inside the Local Bubble in the third galactic quadrant suggest that the ISMF is relatively uniform over spatial scales of 8-200 pc and is more similar to interarm than spiral-arm magnetic fields. The ISMF direction from the polarization data is also consistent with small-scale spatial asymmetries detected in GeV-TeV cosmic rays with a galactic origin. The peculiar geometrical relation found earlier between the cosmic microwave background dipole moment, the heliosphere nose, and the ISMF direction is supported by this study. The interstellar radiation field at {approx}975 A does not appear to play a role in grain alignment for the low-density ISM studied here.« less

[1]  J. Richardson,et al.  The Solar Wind in the Outer Heliosphere , 2009 .

[2]  D. Cox,et al.  Flux-Tube Dynamics and a Model for the Origin of the Local Fluff , 2003 .

[3]  N. Pogorelov,et al.  Comparison of Interstellar Boundary Explorer Observations with 3D Global Heliospheric Models , 2009, Science.

[4]  W. Webber,et al.  An asymmetric solar wind termination shock , 2008, Nature.

[5]  R. Vanderspek,et al.  SEPARATION OF THE INTERSTELLAR BOUNDARY EXPLORER RIBBON FROM GLOBALLY DISTRIBUTED ENERGETIC NEUTRAL ATOM FLUX , 2011 .

[6]  H. Rassoul,et al.  PITCH ANGLE SCATTERING IN THE OUTER HELIOSHEATH AND FORMATION OF THE INTERSTELLAR BOUNDARY EXPLORER RIBBON , 2010 .

[7]  A. Cox,et al.  Allen's astrophysical quantities , 2000 .

[8]  A. Lazarian,et al.  Tracing Magnetic Fields with Aligned Grains , 2007, 0707.0858.

[9]  R. H. Brown,et al.  A curious feature of the radio sky , 1960 .

[10]  P. Frisch Implications of Interstellar Dust and Magnetic Field at the Heliosphere , 2007, 0707.2970.

[11]  K. Nagashima,et al.  Galactic and heliotail‐in anisotropies of cosmic rays as the origin of sidereal daily variation in the energy region < 104 GeV , 1998 .

[12]  D. Mccomas,et al.  SCATTER-FREE PICKUP IONS BEYOND THE HELIOPAUSE AS A MODEL FOR THE INTERSTELLAR BOUNDARY EXPLORER RIBBON , 2010, 1003.4826.

[13]  M. Gruntman,et al.  Structures and Spectral Variations of the Outer Heliosphere in IBEX Energetic Neutral Atom Maps , 2009, Science.

[14]  S. Potter,et al.  The Magnetic Field Strength in the Wall of the Local Bubble toward l, b ≈ 300°, 0° , 2006 .

[15]  A. G. Fenton,et al.  Gaussian analysis of two hemisphere observations of galactic cosmic ray sidereal anisotropies , 1999 .

[16]  M. Salvati The local Galactic magnetic field in the direction of Geminga , 2010, 1001.4947.

[17]  J. Mathis The alignment of interstellar grains , 1986 .

[18]  Jeffrey L. Linsky,et al.  The Structure of the Local Interstellar Medium. IV. Dynamics, Morphology, Physical Properties, and Implications of Cloud-Cloud Interactions , 2007, 0709.4480.

[19]  P. Frisch,et al.  High-resolution observations of the Lyman alpha sky background , 1976 .

[20]  ENHANCED SMALL-SCALE FARADAY ROTATION IN THE GALACTIC SPIRAL ARMS , 2005, astro-ph/0512456.

[21]  J. Hough,et al.  The Efficiency of Grain Alignment in Dense Interstellar Clouds: a Reassessment of Constraints from Near-Infrared Polarization , 2007, 0711.2536.

[22]  N. Pogorelov,et al.  AN ESTIMATE OF THE NEARBY INTERSTELLAR MAGNETIC FIELD USING NEUTRAL ATOMS , 2011 .

[23]  Enrico Camporeale,et al.  Numerical modeling of space plasma flows , 2009 .

[24]  P. Frisch,et al.  Characteristics of nearby interstellar matter , 1995 .

[25]  P. O. Hulth,et al.  OBSERVATION OF ANISOTROPY IN THE ARRIVAL DIRECTIONS OF GALACTIC COSMIC RAYS AT MULTIPLE ANGULAR SCALES WITH IceCube , 2011, 1105.2326.

[26]  R. Rand,et al.  The local Galactic magnetic field , 1989 .

[27]  M. Strumik,et al.  IBEX RIBBON: WHAT COULD IT TELL ABOUT THE LOCAL INTERSTELLAR MAGNETIC FIELD? , 2011 .

[28]  G. Crew,et al.  Evolving outer heliosphere: Large-scale stability and time variations observed by the Interstellar Boundary Explorer , 2010 .

[29]  C. Heiles The Interstellar Magnetic Field , 1976 .

[30]  G. Zank,et al.  STABILITY OF A PICKUP ION RING-BEAM POPULATION IN THE OUTER HELIOSHEATH: IMPLICATIONS FOR THE IBEX RIBBON , 2010 .

[32]  W. Kratschmer,et al.  Dust in the local interstellar wind , 1999 .

[33]  J. Richardson,et al.  A strong, highly-tilted interstellar magnetic field near the Solar System , 2009, Nature.

[34]  U. Sheffield,et al.  Interstellar TiII in the Milky Way and Magellanic Clouds , 2010, 1001.3687.

[35]  P. Frisch Characteristics of the Local Interstellar Medium , 1990 .

[36]  Is the low-l microwave background cosmic? , 2004, Physical review letters.

[37]  F. Santos,et al.  OPTICAL POLARIZATION MAPPING TOWARD THE INTERFACE BETWEEN THE LOCAL CAVITY AND LOOP I , 2010, 1012.3394.

[38]  N. Pogorelov,et al.  Exclusion of Tiny Interstellar Dust Grains From the Heliosphere , 2009, 0911.1492.

[39]  J. Dickey,et al.  Infrared polarimetry and the galactic magnetic field. II: Improved models , 1992 .

[40]  D. Mccomas,et al.  A POSSIBLE GENERATION MECHANISM FOR THE IBEX RIBBON FROM OUTSIDE THE HELIOSPHERE , 2010, 1004.3917.

[41]  P. Frisch THE S1 SHELL AND INTERSTELLAR MAGNETIC FIELD AND GAS NEAR THE HELIOSPHERE , 2008, 0804.1901.

[42]  A. Lazarian,et al.  Alignment of Dust with Magnetic Inclusions: Radiative Torques and Superparamagnetic Barnett and Nuclear Relaxation , 2008, 0801.0265.

[43]  D. S. Mathewson,et al.  Wavelength dependence of interstellar polarization and ratio of total to selective extinction. , 1975 .

[44]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[45]  P. Gazis,et al.  Physics of the outer heliosphere , 1991 .

[46]  E. Möbius,et al.  IBEX observations of heliospheric energetic neutral atoms: Current understanding and future directions , 2011 .

[47]  J. Greenstein,et al.  The Polarization of Starlight by Aligned Dust Grains. , 1951 .

[48]  M. Wolleben,et al.  A New Model for the Loop I (North Polar Spur) Region , 2007, 0704.0276.

[49]  Simulations of mixed-morphology supernova remnants with anisotropic thermal conduction , 2006, astro-ph/0604474.

[50]  C. Heiles Whence the Local Bubble, Gum, Orion? GSH 238+00+09, A Nearby Major Superbubble toward Galactic Longitude 238° , 1998 .

[51]  Carl Heiles 9286 Stars: An Agglomeration of Stellar Polarization Catalogs , 2000 .

[52]  S. Redfield,et al.  The Interstellar Medium Surrounding the Sun , 2011 .

[53]  Simon Prunet,et al.  Statistical Properties of Galactic Starlight Polarization , 2001, astro-ph/0105023.

[54]  D. Gurnett,et al.  On the source location of low-frequency heliospheric radio emissions , 2003 .

[55]  M. Gruntman,et al.  Global Observations of the Interstellar Interaction from the Interstellar Boundary Explorer (IBEX) , 2009, Science.

[56]  NIST,et al.  The Structure of the Local Interstellar Medium. II. Observations of D I, C II, N I, O I, Al II, and Si II toward Stars within 100 Parsecs , 2004 .

[57]  J. Weingartner,et al.  Radiative Torques on Interstellar Grains. II. Grain Alignment , 1996, astro-ph/9611149.

[58]  Jr Leverett Davis,et al.  INTERPLANETARY MAGNETIC FIELDS AND COSMIC RAYS , 1955 .

[59]  U. Colorado,et al.  The Structure of the Local Interstellar Medium. III. Temperature and Turbulence , 2004, astro-ph/0406464.

[60]  N. Schwadron,et al.  THE IMPRINT OF THE VERY LOCAL INTERSTELLAR MAGNETIC FIELD IN SIMULATED ENERGETIC NEUTRAL ATOM MAPS , 2010 .

[61]  S. Potter,et al.  Angle-dependent radiative grain alignment - Confirmation of a magnetic field – radiation anisotropy angle dependence on the efficiency of interstellar grain alignment , 2011, 1109.3698.

[62]  M. Strumik,et al.  THE EFFECTS OF LOCAL INTERSTELLAR MAGNETIC FIELD ON ENERGETIC NEUTRAL ATOM SKY MAPS , 2012 .

[63]  S. Wiktorowicz,et al.  COMPARISONS OF THE INTERSTELLAR MAGNETIC FIELD DIRECTIONS OBTAINED FROM THE IBEX RIBBON AND INTERSTELLAR POLARIZATIONS , 2010, 1009.5118.

[64]  D. Berley,et al.  Discovery of localized regions of excess 10-TeV cosmic rays. , 2008, Physical review letters.

[65]  E. Möbius,et al.  ESTIMATION OF THE NEON/OXYGEN ABUNDANCE RATIO AT THE HELIOSPHERIC TERMINATION SHOCK AND IN THE LOCAL INTERSTELLAR MEDIUM FROM IBEX OBSERVATIONS , 2012 .

[66]  N. Pogorelov,et al.  HELIOSPHERIC ASYMMETRIES AND 2–3 kHz RADIO EMISSION UNDER STRONG INTERSTELLAR MAGNETIC FIELD CONDITIONS , 2009 .

[67]  J. Hough,et al.  The linear polarization of nearby bright stars measured at the parts per million level , 2010, 1003.1753.

[68]  J. Stil,et al.  A ROTATION MEASURE IMAGE OF THE SKY , 2009 .

[69]  P. Martin On Interstellar Grain Alignment by a Magnetic Field , 1971 .

[70]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[71]  A. Surdo Cosmic ray physics with the ARGO-YBJ experiment , 2011 .

[72]  James M. Stone,et al.  Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.

[73]  E. Jessberger,et al.  Elemental Abundances and Mass Densities of Dust and Gas in the Local Interstellar Cloud , 2003 .

[74]  P. P. Kronberg,et al.  A SURVEY OF EXTRAGALACTIC FARADAY ROTATION AT HIGH GALACTIC LATITUDE: THE VERTICAL MAGNETIC FIELD OF THE MILKY WAY TOWARD THE GALACTIC POLES , 2010, 1003.4519.

[75]  G P Zank,et al.  The Heliosphere’s Interstellar Interaction: No Bow Shock , 2012, Science.

[76]  A. Norton,et al.  Circular polarization survey of intermediate polars I. Northern targets in the range 17 h < RA < 23 h , 2009, 0901.3516.

[77]  Stellar Lyα Emission Lines in the Hubble Space Telescope Archive: Intrinsic Line Fluxes and Absorption from the Heliosphere and Astrospheres* , 2005, astro-ph/0503372.

[78]  B. Draine,et al.  Astrophysics of Dust , 2004 .

[79]  N. Pogorelov,et al.  CAN IBEX IDENTIFY VARIATIONS IN THE GALACTIC ENVIRONMENT OF THE SUN USING ENERGETIC NEUTRAL ATOMS? , 2010, 1011.4962.

[80]  New Temperatures of Diffuse Interstellar Gas: Thermally Unstable Gas , 2001, astro-ph/0103126.

[81]  P. Frisch,et al.  The Velocity Distribution of the Nearest Interstellar Gas , 2002, astro-ph/0203093.

[82]  M. Witte Kinetic parameters of interstellar neutral helium - Review of results obtained during one solar cycle with the Ulysses/GAS-instrument , 2004 .

[83]  S. Redfield,et al.  The Structure of the Local Interstellar Medium. V. Electron Densities , 2008, 0804.1802.

[84]  P. Frisch,et al.  The boundary conditions of the heliosphere : photoionization models constrained by interstellar and in situ data , 2007, 0704.0657.

[85]  N. Pogorelov,et al.  PICK-UP IONS IN THE OUTER HELIOSHEATH: A POSSIBLE MECHANISM FOR THE INTERSTELLAR BOUNDARY EXplorer RIBBON , 2010 .