A distributed polling service‐based MAC protocol testbed

Medium access control MAC protocols play a vital role in wireless networking. It is well-known that the high control overhead of IEEE 802.11 MAC is the limiting factor on the throughput and delay performance of wireless networks. In our prior work, three polling service-based medium access control protocols PSMACs are developed to amortize the high control overhead over multiple frame transmissions, thus achieving higher efficiency. Both analysis and simulations are conducted to validate the efficacy of the proposed protocols. In this paper, we extend this work by implementing the distributed version of PSMAC, i.e., PSMAC 2, on the GNU Radio and universal software radio peripheral GNU Radio/USRP platform. We discuss various design considerations and challenges of prototyping PSMAC 2 and carry out extensive experimental studies with the GNU Radio/USRP PSMAC testbed. Our experimental results are found to be consistent with the theoretical study reported in our prior work and validate the advantages of PSMAC under a realistic wireless channels. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  Jeffrey H. Reed Software Radio , 2002 .

[2]  Hossam S. Hassanein,et al.  Performance analysis of differentiated QoS in IEEE 802.11e WLANs , 2005, Int. J. Commun. Syst..

[3]  Xinbing Wang,et al.  A novel IEEE 802.11‐based MAC protocol supporting cooperative communications , 2011, Int. J. Commun. Syst..

[4]  Shivendra S. Panwar,et al.  PSMAC: Polling Service-based Medium Access Control for Wireless Networks , 2007, 2007 5th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks and Workshops.

[5]  Yingsong Huang,et al.  A GNU radio testbed for distributed polling service-based medium access control , 2011, 2011 - MILCOM 2011 Military Communications Conference.

[6]  S. Dharmaraja,et al.  Performance analysis of IEEE 802.11 DCF with stochastic reward nets , 2007, Int. J. Commun. Syst..

[7]  Neal Patwari,et al.  Channel Sounding for the Masses: Low Complexity GNU 802.11b Channel Impulse Response Estimation , 2010, IEEE Transactions on Wireless Communications.

[8]  Xiaolong Li,et al.  A case study of a MIMO SDR implementation , 2008, MILCOM 2008 - 2008 IEEE Military Communications Conference.

[9]  Mani B. Srivastava,et al.  An experimental study of network performance impact of increased latency in software defined radios , 2007, WinTECH '07.

[10]  Carey L. Williamson,et al.  Analytical modeling of bidirectional multi‐channel IEEE 802.11 MAC protocols , 2011, Int. J. Commun. Syst..

[11]  Robert W. Heath,et al.  Early Results on Hydra: A Flexible MAC/PHY Multihop Testbed , 2007, 2007 IEEE 65th Vehicular Technology Conference - VTC2007-Spring.

[12]  Raj Jain,et al.  A Quantitative Measure Of Fairness And Discrimination For Resource Allocation In Shared Computer Systems , 1998, ArXiv.

[13]  Alexander M. Wyglinski,et al.  Widely tunable RF transceiver front end for software-defined radio , 2009, MILCOM 2009 - 2009 IEEE Military Communications Conference.

[14]  P. Castiglione,et al.  IEEE 802 . 11 p Transmission Using GNURadio , 2010 .

[15]  M.Eng. Ir. Gamantyo Hendrantoro,et al.  PENGUKURAN RESPON IMPULS KANAL RADIO MIMO 2 X 2 PADA FREKUENSI 2,4 GHz MENGGUNAKAN WARP (WIRELESS OPEN ACCESS RESEARCH PLATFORM) , 2014 .

[16]  Periklis Chatzimisios,et al.  Performance analysis of the IEEE 802.11 MAC protocol for wireless LANs , 2005, Int. J. Commun. Syst..

[17]  Chih-Heng Ke,et al.  A smart exponential-threshold-linear backoff mechanism for IEEE 802.11 WLANs , 2011, Int. J. Commun. Syst..

[18]  Qian Han,et al.  A Software Defined Radio Based Adaptive Interference Avoidance TDCS Cognitive Radio , 2010, 2010 IEEE International Conference on Communications.

[19]  Peter Steenkiste,et al.  Supporting Integrated MAC and PHY Software Development for the USRP SDR , 2006, 2006 1st IEEE Workshop on Networking Technologies for Software Defined Radio Networks.

[20]  A. M. Abdullah,et al.  Wireless lan medium access control (mac) and physical layer (phy) specifications , 1997 .

[21]  Young-Joo Suh,et al.  Multihop Transmission Opportunity in Wireless Multihop Networks , 2010, 2010 Proceedings IEEE INFOCOM.

[22]  Shivendra S. Panwar,et al.  On the Performance of Distributed Polling Service-based Medium Access Control , 2008, IEEE Transactions on Wireless Communications.

[23]  Elza Erkip,et al.  Cooperative network implementation using open-source platforms , 2009, IEEE Communications Magazine.

[24]  Yang Xiao IEEE 802.11 performance enhancement via concatenation and piggyback mechanisms , 2005, IEEE Transactions on Wireless Communications.

[25]  Selvamuthu Dharmaraja,et al.  Performance analysis of IEEE 802.11 DCF with stochastic reward nets: Research Articles , 2007 .

[26]  Ruben de Francisco,et al.  Adaptive spectrum sensing for cognitive radios: An experimental approach , 2011, 2011 IEEE Wireless Communications and Networking Conference.

[27]  Marco Conti,et al.  Optimization of Efficiency and Energy Consumption in p-Persistent CSMA-Based Wireless LANs , 2002, IEEE Trans. Mob. Comput..

[28]  Seungwon Choi,et al.  Prototype implementation of adaptive beamforming-MIMO OFDMA system based on IEEE 802.16e WMAN standard and its experimental results , 2011, Int. J. Commun. Syst..

[29]  Yi-Ching Liaw,et al.  Adaptive backoff scheme for ad hoc networks based on IEEE 802.11 , 2010, Int. J. Commun. Syst..

[30]  Srihari Nelakuditi,et al.  Link Sense: Beyond Wireless Carrier Sensing , 2011, IEEE Communications Letters.

[31]  Jinyun Zhang,et al.  Enhancing MAC Performance with a Reverse Direction Protocol for High-Capacity Wireless LANs , 2006, IEEE Vehicular Technology Conference.

[32]  Xin Liu,et al.  Performance of IEEE 802.11 under Jamming , 2008, Mobile Networks and Applications.

[33]  Kihong Park,et al.  The Internet as a Complex System , 2005, The Internet as a Large-Scale Complex System.

[34]  Xiaolong Li,et al.  Load Adaptive MAC: A Hybrid MAC Protocol for MIMO SDR MANETs , 2011, IEEE Transactions on Wireless Communications.

[35]  Cristina Comaniciu,et al.  Cross-layer MAC design for location-aware wireless sensor networks , 2011, Int. J. Commun. Syst..

[36]  Chung-Nan Lee,et al.  Analysis and enhancement of multi-channel MAC protocol for ad hoc networks , 2011, Int. J. Commun. Syst..

[37]  Periklis Chatzimisios,et al.  Performance analysis of the IEEE 802.11 MAC protocol for wireless LANs: Research Articles , 2005 .

[38]  Robert Tappan Morris,et al.  Capacity of Ad Hoc wireless networks , 2001, MobiCom '01.

[39]  Cheng-Xiang Wang,et al.  Capacity Analysis of a Multi-Cell Multi-Antenna Cooperative Cellular Network with Co-Channel Interference , 2011, IEEE Transactions on Wireless Communications.

[40]  Eddie Kohler,et al.  The Click modular router , 1999, SOSP.

[41]  Paula Fikkert,et al.  Specification of the Bluetooth System , 2003 .

[42]  Yuan-Cheng Lai,et al.  Efficient dynamic frame aggregation in IEEE 802.11s mesh networks , 2009 .

[43]  Yang Xiao,et al.  Throughput and delay limits of IEEE 802.11 , 2002, IEEE Communications Letters.

[44]  Ilenia Tinnirello,et al.  Wireless MAC processors: Programming MAC protocols on commodity Hardware , 2012, 2012 Proceedings IEEE INFOCOM.

[45]  Victor C. M. Leung,et al.  Cross-Layer and Path Priority Scheduling Based Real-Time Video Communications over Wireless Sensor Networks , 2008, VTC Spring 2008 - IEEE Vehicular Technology Conference.

[46]  Qian Zhang,et al.  Implementation and Evaluation of Cooperative Communication Schemes in Software-Defined Radio Testbed , 2010, 2010 Proceedings IEEE INFOCOM.

[47]  Yuan-Cheng Lai,et al.  Efficient dynamic frame aggregation in IEEE 802.11s mesh networks , 2009, Int. J. Commun. Syst..