Reconfigurable Hardware Implementation of Arithmetic Modulo Minimal Redundancy Cyclotomic Primes for ECC

The dominant cost in Elliptic Curve Cryptography (ECC) over prime fields is modular multiplication. Minimal Redundancy Cyclotomic Primes (MRCPs) were recently introduced by Granger~\ea for use as base field moduli in ECC, since they permit a novel and very efficient modular multiplication algorithm. Here we consider a reconfigurable hardware implementation of arithmetic modulo a $258$-bit example, for use at the $128$-bit AES security level. We examine this implementation for speed and area using parallelisation methods and inbuilt FPGA resources. The results are compared against a current method in use, the Montgomery multiplier.

[1]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[2]  N. Smart,et al.  Efficient Arithmetic Modulo Minimal Redundancy Cyclotomic Primes , 2009 .

[3]  Tibor Juhas The use of elliptic curves in cryptography , 2007 .

[4]  Alfred Menezes,et al.  Software Implementation of the NIST Elliptic Curves Over Prime Fields , 2001, CT-RSA.

[5]  Robert A. Walker,et al.  Introduction to the Scheduling Problem , 1995, IEEE Des. Test Comput..

[6]  Victor S. Miller,et al.  Use of Elliptic Curves in Cryptography , 1985, CRYPTO.

[7]  M. Anwar Hasan,et al.  Montgomery Reduction Algorithm for Modular Multiplication Using Low-Weight Polynomial Form Integers , 2007, 18th IEEE Symposium on Computer Arithmetic (ARITH '07).

[8]  William P. Marnane,et al.  A Hardware Analysis of Twisted Edwards Curves for an Elliptic Curve Cryptosystem , 2009, ARC.

[9]  Arnaud Tisserand,et al.  Comparison of Simple Power Analysis Attack Resistant Algorithms for an Elliptic Curve Cryptosystem , 2007, J. Comput..

[10]  N. Koblitz Elliptic curve cryptosystems , 1987 .

[11]  Máire O'Neill,et al.  Hardware Elliptic Curve Cryptographic Processor Over$rm GF(p)$ , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[12]  Jae-Myung Chung,et al.  More generalized Mersenne numbers , 2004 .

[13]  P. L. Montgomery Modular multiplication without trial division , 1985 .

[14]  Yasuyuki Nogami,et al.  Finite Extension Field with Modulus of All-One Polynomial and Representation of Its Elements for Fast Arithmetic Operations , 2003, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[15]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[16]  尚弘 島影 National Institute of Standards and Technologyにおける超伝導研究及び生活 , 2001 .

[17]  M. Anwar Hasan,et al.  Low-Weight Polynomial Form Integers for Efficient Modular Multiplication , 2007, IEEE Transactions on Computers.