Reconfigurable Hardware Implementation of Arithmetic Modulo Minimal Redundancy Cyclotomic Primes for ECC
暂无分享,去创建一个
[1] Adi Shamir,et al. A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.
[2] N. Smart,et al. Efficient Arithmetic Modulo Minimal Redundancy Cyclotomic Primes , 2009 .
[3] Tibor Juhas. The use of elliptic curves in cryptography , 2007 .
[4] Alfred Menezes,et al. Software Implementation of the NIST Elliptic Curves Over Prime Fields , 2001, CT-RSA.
[5] Robert A. Walker,et al. Introduction to the Scheduling Problem , 1995, IEEE Des. Test Comput..
[6] Victor S. Miller,et al. Use of Elliptic Curves in Cryptography , 1985, CRYPTO.
[7] M. Anwar Hasan,et al. Montgomery Reduction Algorithm for Modular Multiplication Using Low-Weight Polynomial Form Integers , 2007, 18th IEEE Symposium on Computer Arithmetic (ARITH '07).
[8] William P. Marnane,et al. A Hardware Analysis of Twisted Edwards Curves for an Elliptic Curve Cryptosystem , 2009, ARC.
[9] Arnaud Tisserand,et al. Comparison of Simple Power Analysis Attack Resistant Algorithms for an Elliptic Curve Cryptosystem , 2007, J. Comput..
[10] N. Koblitz. Elliptic curve cryptosystems , 1987 .
[11] Máire O'Neill,et al. Hardware Elliptic Curve Cryptographic Processor Over$rm GF(p)$ , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.
[12] Jae-Myung Chung,et al. More generalized Mersenne numbers , 2004 .
[13] P. L. Montgomery. Modular multiplication without trial division , 1985 .
[14] Yasuyuki Nogami,et al. Finite Extension Field with Modulus of All-One Polynomial and Representation of Its Elements for Fast Arithmetic Operations , 2003, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..
[15] Adi Shamir,et al. A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.
[16] 尚弘 島影. National Institute of Standards and Technologyにおける超伝導研究及び生活 , 2001 .
[17] M. Anwar Hasan,et al. Low-Weight Polynomial Form Integers for Efficient Modular Multiplication , 2007, IEEE Transactions on Computers.