Towards Reversible and Moisture Tolerant Aprotic Lithium-Air Batteries

<b>The development of moisture-tolerant, LiOH-based non-aqueous Li-O<sub>2</sub> batteries is a promising route to bypassing the inherent limitations caused by the instability of their typical discharge products, LiO<sub>2</sub> and Li<sub>2</sub>O<sub>2</sub>. The use of the I<sup>-</sup>/I<sub>3</sub><sup>-</sup> redox couple to mediate the LiOH-based oxygen reduction and oxidation reactions has proven challenging to develop due to the multiple reaction paths induced by the oxidation of I<sup>-</sup> on cell charging. In this work we demonstrate a reversible LiOH-based Li-O<sub>2</sub> battery cycling through a 4 e<sup>-</sup>/O<sub>2</sub> process with low charging overpotential (below 3.5 V vs Li/Li<sup>+</sup>) by introducing an ionic liquid to a glyme-based electrolyte containing LiI and water. The addition to the ionic liquid increases the oxidizing power of I<sub>3</sub><sup>-</sup>, shifting the charging mechanism from IO<sup>-</sup>/IO<sub>3</sub><sup>- </sup>formation to O<sub>2</sub> evolution</b>

[1]  Annika Bose Styczynski,et al.  Public policy strategies for next-generation vehicle technologies: An overview of leading markets , 2019, Environmental Innovation and Societal Transitions.

[2]  Y. Shao-horn,et al.  Solvent-Dependent Oxidizing Power of LiI Redox Couples for Li-O2 Batteries , 2019, Joule.

[3]  C. Grey,et al.  Understanding LiOH Formation in a Li-O2 Battery with LiI and H2O Additives , 2018, ACS Catalysis.

[4]  P. Balbuena,et al.  Exploring the LiOH Formation Reaction Mechanism in Lithium–Air Batteries , 2018 .

[5]  R. Tatara,et al.  Electrolyte Composition in Li/O2 Batteries with LiI Redox Mediators: Solvation Effects on Redox Potentials and Implications for Redox Shuttling , 2018 .

[6]  C. Bauschlicher,et al.  Decomposition of Ionic Liquids at Lithium Interfaces. 2. Gas Phase Computations , 2017 .

[7]  C. Bauschlicher,et al.  Decomposition of Ionic Liquids at Lithium Interfaces. 1. Ab Initio Molecular Dynamics Simulations , 2017 .

[8]  C. Grey,et al.  Understanding LiOH Chemistry in a Ruthenium‐Catalyzed Li–O2 Battery , 2017, Angewandte Chemie.

[9]  David G. Kwabi,et al.  The role of iodide in the formation of lithium hydroxide in lithium–oxygen batteries , 2017 .

[10]  Shichao Wu,et al.  Unraveling the Complex Role of Iodide Additives in Li–O2 Batteries , 2017 .

[11]  Mario Leypold,et al.  Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries , 2017, Nature Energy.

[12]  E. Calvo,et al.  Communication—Lithium Ion Concentration Effect in PYR14TFSI Ionic Liquid for Li-O2Battery Cathodes , 2017 .

[13]  E. Calvo,et al.  In situ infrared spectroscopy study of PYR14TFSI ionic liquid stability for Li–O2 battery , 2017 .

[14]  Chibueze V. Amanchukwu,et al.  One-Electron Mechanism in a Gel–Polymer Electrolyte Li–O2 Battery , 2016 .

[15]  Colin M. Burke,et al.  Implications of 4 e– Oxygen Reduction via Iodide Redox Mediation in Li–O2 Batteries , 2016 .

[16]  Dan Addison,et al.  Comment on “Cycling Li-O2 batteries via LiOH formation and decomposition” , 2016, Science.

[17]  C. Grey,et al.  Response to Comment on “Cycling Li-O2 batteries via LiOH formation and decomposition” , 2016, Science.

[18]  Yusuke Yamauchi,et al.  A Synergistic System for Lithium–Oxygen Batteries in Humid Atmosphere Integrating a Composite Cathode and a Hydrophobic Ionic Liquid‐Based Electrolyte , 2016 .

[19]  Tao Liu,et al.  Cycling Li-O2 batteries via LiOH formation and decomposition , 2015, Science.

[20]  A. Bond,et al.  Voltammetric Determination of the Iodide/Iodine Formal Potential and Triiodide Stability Constant in Conventional and Ionic Liquid Media , 2015 .

[21]  R. Atkin,et al.  Structural and aggregate analyses of (Li salt + glyme) mixtures: the complex nature of solvate ionic liquids. , 2015, Physical chemistry chemical physics : PCCP.

[22]  J. Hassoun,et al.  A lithium-ion oxygen battery using a polyethylene glyme electrolyte mixed with an ionic liquid , 2015 .

[23]  F Mueller,et al.  An advanced lithium-air battery exploiting an ionic liquid-based electrolyte. , 2014, Nano letters.

[24]  David G. Kwabi,et al.  Materials challenges in rechargeable lithium-air batteries , 2014 .

[25]  H. Gasteiger,et al.  The Role of Electrolyte Solvent Stability and Electrolyte Impurities in the Electrooxidation of Li2O2 in Li-O2 Batteries , 2014 .

[26]  H. Gasteiger,et al.  Stability of a Pyrrolidinium-Based Ionic Liquid in Li-O2 Cells , 2014 .

[27]  Takashi Mori,et al.  Combining Accurate O2 and Li2O2 Assays to Separate Discharge and Charge Stability Limitations in Nonaqueous Li-O2 Batteries. , 2013, The journal of physical chemistry letters.

[28]  Yang Shao-Horn,et al.  Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li–O2 batteries , 2013 .

[29]  M. Mastragostino,et al.  Role of Oxygen Mass Transport in Rechargeable Li/O2 Batteries Operating with Ionic Liquids. , 2013, The journal of physical chemistry letters.

[30]  Yang Shao-Horn,et al.  Probing the Reaction Kinetics of the Charge Reactions of Nonaqueous Li-O2 Batteries. , 2013, The journal of physical chemistry letters.

[31]  E. Plichta,et al.  Oxygen Reduction Reactions in Ionic Liquids and the Formulation of a General ORR Mechanism for Li–Air Batteries , 2012 .

[32]  R M Shelby,et al.  Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. , 2011, The journal of physical chemistry letters.

[33]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .